Land abandonment transforms soil microbiome stability and functional profiles in apple orchards of the Chinese Losses Plateau.

Sci Total Environ

National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China. Electronic address:

Published: January 2024

Land abandonment is considered an effective strategy for ecological restoration on a global scale. However, few studies have focused on how environmental heterogeneity associated with the age of land abandonment affects the assembly and potential functions of the soil microbial community. In the present study, we investigated the community assembly of soil bacteria and fungi as well as the stability of soil networks and their potential functions in the chronosequence of abandoned apple orchards. We elucidated that the Shannon diversity of bacteria and the richness of fungi increased as land abandonment progressed. In addition, land abandonment destabilized the microbial network stability but increased network complexity. Soil available nitrogen, total carbon, and moisture are the potentially important factors in shaping the soil microbial assembly. Importantly, we showed that the microbial community diversity and functional diversity presented a synchronization effect in response to the different stages of land abandonment. Furthermore, specific bacterial taxa related to carbon fixation, dissimilatory nitrate reduction, and organic phosphorus mineralization were significantly enriched during the early abandonment stage. Collectively, these results indicate that land abandonment significantly transformed soil microbiome assembly and functional adaptation during the restoration process. These findings provide valuable insights into the influence of ecological restoration on soil microbiome and ecosystem functions in arable areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167556DOI Listing

Publication Analysis

Top Keywords

land abandonment
28
soil microbiome
12
soil
8
apple orchards
8
ecological restoration
8
potential functions
8
soil microbial
8
microbial community
8
land
7
abandonment
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!