A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physicochemical, antibacterial and food preservation properties of active packaging films based on chitosan/ε-polylysine-grafted bacterial cellulose. | LitMetric

Physicochemical, antibacterial and food preservation properties of active packaging films based on chitosan/ε-polylysine-grafted bacterial cellulose.

Int J Biol Macromol

School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu, 214122, China.

Published: December 2023

To address the environmental and food contamination issues caused by plastics and microorganisms, antimicrobial films using natural polymers has attracted enormous attention. In this work, we proposed a green, convenient and fast approach to prepare antimicrobial films from chitosan (CS), bacterial cellulose (BC) and ε-polylysine (ε-PL). The effects of different concentrations of ε-PL (0 %, 0.25 %, 0.5 %, 0.75 %, 1 %, w/v) on the physicochemical properties and antibacterial activity of composite films (CS-DABC-x%PL) were systematically investigated. Furthermore, a comprehensive comparison with purely physically mixed CS-BC-x%PL films provides a deeper understanding of the subject matter. Characterization tests of the films were conducted using scanning electron microscope (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results suggested that the incorporation of 0.5 % ε-PL reduced the water solubility of the composite film by 19.82 %, along with improved the tensile strength and thermal stability by 37.31 % and 28.54 %. As ε-PL concentration increased to 1 %, the antibacterial performance of the films gradually enhanced. Additionally, the CS-DABC-0.5%PL film demonstrated effectiveness in delaying the deterioration of tilapia. These findings imply that this novel green packaging material holds significant potential in food preservation due to its promising antibacterial properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127231DOI Listing

Publication Analysis

Top Keywords

food preservation
8
bacterial cellulose
8
antimicrobial films
8
films
7
physicochemical antibacterial
4
antibacterial food
4
preservation properties
4
properties active
4
active packaging
4
packaging films
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!