Sex-dependent and long-lasting effects of adolescent sleep deprivation on social behaviors in adult mice.

Pharmacol Biochem Behav

Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China. Electronic address:

Published: November 2023

Increasing evidence indicates that sleep deprivation (SD) can exert multiple negative effects on neuronal circuits, resulting in memory impairment, depression, and anxiety, among other consequences. The long-term effects of SD during early life on behavioral phenotypes in adulthood are still poorly understood. In this study, we investigated the long-lasting effects of SD in adolescence on social behaviors, including empathic ability and social dominance, and the role of the gut microbiota in these processes, using a series of behavioral paradigms in mice combined with 16S rRNA gene pyrosequencing. Behavioral assay results showed that SD in adolescence significantly reduced the frequency of licking, the total time spent licking, and the time spent sniffing during the emotional contagion test in male mice, effects that were not observed in female mice. These findings indicated that SD in adolescence exerts long-term, negative effects on empathic ability in mice and that this effect is sex-dependent. In contrast, SD in adolescence had no significant effect on locomotor activities, social dominance but decreased social interaction in male mice in adulthood. Meanwhile, 16S rRNA gene pyrosequencing results showed that gut microbial richness and diversity were significantly altered in adult male mice subjected to SD in adolescence. Our data provide direct evidence that SD in youth can induce alterations in empathic ability in adult male mice, which may be associated with changes in the gut microbiota. These findings highlight the long-lasting effects of sleep loss in adolescence on social behaviors in adulthood and the role played by the brain-gut axis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2023.173657DOI Listing

Publication Analysis

Top Keywords

male mice
16
long-lasting effects
12
social behaviors
12
empathic ability
12
sleep deprivation
8
mice
8
negative effects
8
adolescence social
8
social dominance
8
gut microbiota
8

Similar Publications

Background: Fragile X syndrome (FXS) is a leading known genetic cause of intellectual disability and autism spectrum disorders (ASD)-associated behaviors. A consistent and debilitating phenotype of FXS is auditory hypersensitivity that may lead to delayed language and high anxiety. Consistent with findings in FXS human studies, the mouse model of FXS, the Fmr1 knock out (KO) mouse, shows auditory hypersensitivity and temporal processing deficits.

View Article and Find Full Text PDF

Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.

View Article and Find Full Text PDF

NUFIP1 integrates amino acid sensing and DNA damage response to maintain the intestinal homeostasis.

Nat Metab

January 2025

Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China.

Nutrient availability strongly affects intestinal homeostasis. Here, we report that low-protein (LP) diets decrease amino acids levels, impair the DNA damage response (DDR), cause DNA damage and exacerbate inflammation in intestinal tissues of male mice with inflammatory bowel disease (IBD). Intriguingly, loss of nuclear fragile X mental retardation-interacting protein 1 (NUFIP1) contributes to the amino acid deficiency-induced impairment of the DDR in vivo and in vitro and induces necroptosis-related spontaneous enteritis.

View Article and Find Full Text PDF

The smoking cessation drug cytisine exerts neuroprotection in substantia nigra pars compacta (SNc) dopaminergic (DA) neurons of female but not male 6-hydroxydopamine (6-OHDA) lesioned parkinsonian mice. To address the important question of whether circulating 17β-estradiol mediates this effect, we employ two mouse models aimed at depleting systemically circulating 17β-estradiol: (i) bilateral ovariectomy (OVX), and (ii) aromatase inhibition with systemically administered letrozole. In both models, depleting systemically circulating 17β-estradiol in female 6-OHDA lesioned parkinsonian mice results in the loss of cytisine-mediated neuroprotection as measured using apomorphine-induced contralateral rotations and SNc DA neurodegeneration.

View Article and Find Full Text PDF

Conventional chemotherapy- and radiotherapy-induced cancer senescence, which is characterized by poor proliferation, drug resistance, and senescence-associated secretory phenotype, has gained attention as contributing to cancer relapse and the development of an immunosuppressive tumor microenvironment. However, the association between cancer senescence and anti-tumor immunity is not fully understood. Here, we demonstrate that senescent cancer cells increase the level of PD-L1 by promoting its transcription and glycosylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!