Colorectal cancer (CRC) holds the distinction of being the most prevalent malignant tumor affecting the digestive system. It is a formidable global health challenge, as it ranks as the fourth leading cause of cancer-related fatalities around the world. Despite considerable advancements in comprehending and addressing colorectal cancer (CRC), the likelihood of recurring tumors and metastasis remains a major cause of high morbidity and mortality rates during treatment. Currently, colonoscopy is the predominant method for CRC screening. Artificial intelligence has emerged as a promising tool in aiding the diagnosis of polyps, which have demonstrated significant potential. Unfortunately, most segmentation methods face challenges in terms of limited accuracy and generalization to different datasets, especially the slow processing and analysis speed has become a major obstacle. In this study, we propose a fast and efficient polyp segmentation framework based on the Large-Kernel Receptive Field Block (LK-RFB) and Global Parallel Partial Decoder(GPPD). Our proposed ColonNet has been extensively tested and proven effective, achieving a DICE coefficient of over 0.910 and an FPS of over 102 on the CVC-300 dataset. In comparison to the state-of-the-art (SOTA) methods, ColonNet outperforms or achieves comparable performance on five publicly available datasets, establishing a new SOTA. Compared to state-of-the-art methods, ColonNet achieves the highest FPS (over 102 FPS) while maintaining excellent segmentation results, achieving the best or comparable performance on the five public datasets. The code will be released at: https://github.com/SPECTRELWF/ColonNet.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107541 | DOI Listing |
J Clin Med
December 2024
Seoul Medical Clinic, Seoul 02037, Republic of Korea.
: Timely detection and removal of colonic adenomas are critical for preventing colorectal cancer. : This study analyzed differences in colonic adenoma characteristics based on colonoscopy history by reviewing the medical records of 14,029 patients who underwent colonoscopy between January and June 2020 across 40 primary medical institutions in Korea. : Adenoma and advanced neoplasia characteristics varied significantly with colonoscopy history ( < 0.
View Article and Find Full Text PDFComput Biol Med
January 2025
Department of EECE, Military Institute of Science and Technology (MIST), Mirpur Cantonment, Dhaka, 1216, Bangladesh. Electronic address:
The detection and excision of colorectal polyps, precursors to colorectal cancer (CRC), can improve survival rates by up to 90%. Automated polyp segmentation in colonoscopy images expedites diagnosis and aids in the precise identification of adenomatous polyps, thus mitigating the burden of manual image analysis. This study introduces FocusUNet, an innovative bi-level nested U-structure integrated with a dual-attention mechanism.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2025
Computer Vision and Image Processing Lab., UofL, Louisville, KY, 40292, USA.
Purpose: This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settings.
Methods: The proposed approach integrates 3D contextual information via guided sequential episodic training in which a query CT slice is segmented by exploiting its previous labeled CT slice (i.e.
Int Forum Allergy Rhinol
January 2025
Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA.
Background: We developed and assessed the performance of a machine learning model (MLM) to identify, classify, and segment sinonasal masses based on endoscopic appearance.
Methods: A convolutional neural network-based model was constructed from nasal endoscopy images from patients evaluated at an otolaryngology center between 2013 and 2024. Images were classified into four groups: normal endoscopy, nasal polyps, benign, and malignant tumors.
Comput Biol Med
December 2024
Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing, College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China; Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou 350116, China. Electronic address:
Accurate polyp segmentation is crucial for early diagnosis and treatment of colorectal cancer. This is a challenging task for three main reasons: (i) the problem of model overfitting and weak generalization due to the multi-center distribution of data; (ii) the problem of interclass ambiguity caused by motion blur and overexposure to endoscopic light; and (iii) the problem of intraclass inconsistency caused by the variety of morphologies and sizes of the same type of polyps. To address these challenges, we propose a new high-precision polyp segmentation framework, MEFA-Net, which consists of three modules, including the plug-and-play Mask Enhancement Module (MEG), Separable Path Attention Enhancement Module (SPAE), and Dynamic Global Attention Pool Module (DGAP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!