Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nuclear magnetic resonance is a crucial technique for studying biological complexes, as it provides precise structural and dynamic information at the atomic level. However, the process of assigning resonances can be time-consuming and challenging, particularly in cases where peaks overlap, or the data quality is poor. In this paper, we present TINTO (Two and three-dimensional Imaging for NMR sTrip Operation via CV/ML), an advanced semiautomatic toolset for NMR resonance assignment. TINTO comprises two separate tools, each tailored for either two-dimensional or three-dimensional imaging. The toolset utilizes a computer-vision approach and a machine learning approach, specifically structural similarity index and principal components analysis, to perform visual similarity searches of resonances and quickly locate similar strips, and in that way overcome the challenges associated with peak overlap without requiring peak picking. Our tool offers a user-friendly interface and has the potential to enhance the efficiency and accuracy of NMR resonance assignment, particularly in complex cases. This advancement holds promising implications for furthering our understanding of biological systems at the molecular level. TINTO is pre-installed in the POKY suite, which is available at https://poky.clas.ucdenver.edu .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10858-023-00423-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!