AI Article Synopsis

  • - The study examined how genetic variations in the CYP2D6 enzyme affect the pharmacokinetics of dextromethorphan and desipramine in healthy African volunteers, dividing subjects into three genetic cohorts.
  • - Results showed that participants with CYP2D6*17*17 and CYP2D6*29*29 genotypes exhibited significantly higher drug exposure levels compared to those with the CYP2D6*1/*2 variant, indicating they metabolize these medications much slower.
  • - Mild adverse effects were reported, with one instance of a moderately severe headache in a CYP2D6*17*17 individual, highlighting the need for careful dosage adjustments of CYP2D6-related drugs in African populations.

Article Abstract

This study investigated the differences in the pharmacokinetics (PK) of dextromethorphan and desipramine in healthy African volunteers to understand the effect of allelic variants of the human cytochrome P450 2D6 (CYP2D6) enzyme, namely the diplotypes of CYP2D6*1/*2 (*1*1, *1*2, *2*2) and the genotypes of CYP2D6*17*17 and CYP2D6*29*29. Overall, 28 adults were included and split into 3 cohorts after genotype screening: CYP2D6*1/*2 (n = 12), CYP2D6*17*17 (n = 12), and CYP2D6*29*29 (n = 4). Each subject received a single oral dose of dextromethorphan 30 mg syrup on day 1 and desipramine 50 mg tablet on day 8. The PK parameters of area under the plasma concentration-time curve from time of dosing to time of last quantifiable concentration (AUC), and extrapolated to infinity (AUC), and the maximum plasma concentration (C) were determined. For both dextromethorphan and desipramine, AUC and C were higher in subjects of the CYP2D6*29*29 and CYP2D6*17*17 cohorts, as compared with subjects in the CYP2D6*1/*2 diplotype cohort and with normal metabolizers from the literature. All PK parameters, including AUC, C, and the elimination half-life, followed a similar trend: CYP2D6*17*17 > CYP2D6*29*29 > CYP2D6*1/*2. The plasma and urinary drug/metabolite exposure ratios of both drugs were higher in subjects of the CYP2D6*17*17 and CYP2D6*29*29 cohorts, when compared with subjects in the CYP2D6*1/*2 diplotype cohort. All adverse events were mild, except in 1 subject with CYP2D6*17*17 who had moderately severe headache with desipramine. These results indicate that subjects with CYP2D6*17*17 and CYP2D6*29*29 genotypes were 5-10 times slower metabolizers than those with CYP2D6*1/*2 diplotypes. These findings suggest that dose optimization may be required when administering CYP2D6 substrate drugs in African patients. Larger studies can further validate these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcph.2366DOI Listing

Publication Analysis

Top Keywords

cyp2d6*17*17 cyp2d6*29*29
12
differences pharmacokinetics
8
healthy african
8
allelic variants
8
normal metabolizers
8
dextromethorphan desipramine
8
higher subjects
8
cohorts compared
8
compared subjects
8
subjects cyp2d6*1/*2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!