This study developed a facile, highly sensitive technique for extracting and quantifying barbiturates in serum samples. This method combined ultrasound and surfactant-assisted dispersive liquid-liquid microextraction with poly(ethylene oxide)-mediated stacking in capillary electrophoresis. Factors influencing the extraction and stacking performance, such as the type and volume of extraction solvents, the type and concentration of surfactant, extraction time, salt additives, sample matrix, solution pH, and composition of the background electrolyte, were carefully studied and optimized to achieve the optimal detection sensitivity. Under the optimized extraction (injecting 140 μL C H Cl into 1 mL of sample with pH 4 (5 mM sodium phosphate containing 0.05 mM Tween 20 and sonication for 1 min) and separation conditions (150 mM tris(hydroxymethyl)aminomethane-borate with pH 8.5 containing 0.5% (m/v) poly(ethylene oxide)), the limits of detection (signal-to-noise ratio = 3) of five barbiturates ranged from 0.20 to 0.33 ng/mL, and the calculated sensitivity improvement ranged from 868- to 1700-fold. The experimental results revealed excellent linearity (R  > 0.99), with relative standard deviations of 2.1%-3.4% for the migration time and 4.3%-5.7% for the peak area. The recoveries of the spiked serum samples were 97.1% -110.3%. Our proposed approach offers a rapid and practical method for quantifying barbiturates in biological fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.202300557DOI Listing

Publication Analysis

Top Keywords

ultrasound surfactant-assisted
8
surfactant-assisted dispersive
8
dispersive liquid-liquid
8
liquid-liquid microextraction
8
polyethylene oxide-mediated
8
oxide-mediated stacking
8
highly sensitive
8
quantifying barbiturates
8
serum samples
8
microextraction prior
4

Similar Publications

Carpaine, a major alkaloid in papaya leaves, has considerable cardiovascular benefits alongside its notable effects on muscle relaxation when utilized in medicine. In this study, the coupling of acid-base extraction and flotation was developed to completely remove the use of toxic solvents. This method entails the extraction of carpaine from L.

View Article and Find Full Text PDF

NIR-II Excitable Water-Dispersible Two-Dimensional Conjugated Polymer Nanoplates for Two-Photon Luminescence Bioimaging.

ACS Appl Mater Interfaces

January 2024

School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.

While two-dimensional conjugated polymers (2DCPs) have shown great promise in two-photon luminescence (TPL) bioimaging, 2DCP-based TPL imaging agents that can be excited in the second near-infrared window (NIR-II) have rarely been reported so far. Herein, we report two 2DCPs including and , with octupolar olefin-linked structures for NIR-II-excited bioimaging. The 2DCPs are customized with the fully conjugated donor-acceptor (D-A) linkage and aggregation-induced emission (AIE) active building blocks, leading to good two-photon absorption into the NIR-II window with a 2PACS of ∼64.

View Article and Find Full Text PDF

This study developed a facile, highly sensitive technique for extracting and quantifying barbiturates in serum samples. This method combined ultrasound and surfactant-assisted dispersive liquid-liquid microextraction with poly(ethylene oxide)-mediated stacking in capillary electrophoresis. Factors influencing the extraction and stacking performance, such as the type and volume of extraction solvents, the type and concentration of surfactant, extraction time, salt additives, sample matrix, solution pH, and composition of the background electrolyte, were carefully studied and optimized to achieve the optimal detection sensitivity.

View Article and Find Full Text PDF

In this study, a simple, rapid, and ultrasensitive technique was developed to identify five pairs of phenothiazine drugs by using ultrasound-enhanced and surfactant-assisted dispersive liquid-liquid microextraction (UESA-DLLME), field-amplified sample injection with capillary electrophoresis (FASI-CE), and capacitively coupled capacitively coupled contactless conductivity detection (CD). During the CE separation process, UESA-DLLME was used for sample clean-up and offline concentration, and FASI-CE was used for the online concentration of phenothiazine enantiomers. At baseline, the five pairs of phenothiazine enantiomer drugs required 18 min for separation.

View Article and Find Full Text PDF

In this study, the photocatalytic activity of ZnO was effectively improved via its combination with spinel cobalt ferrite (SCF) nanoparticles. The catalytic performance of ZnO@SCF (ZSCF) was investigated in coupling with UV irradiation and ultrasound (US), as a heterogeneous sono-photocatalytic process, for the decontamination of phenanthrene (PHE) from contaminated soil. Soil washing tests were conducted in a batch environment, after extraction assisted by using Tween 80.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!