Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is crucial to monitor the authenticity of royal jelly (RJ) because the qualities of RJs produced by different floral periods vary substantially. In the context of non-migratory beekeeping, this study aims to identify rape RJ (RRJ), chaste RJ (CRJ), and sesame RJ (SRJ) based on δC, δN, δH, and δO combined with machine learning and to evaluate environmental effect factors. The results showed that δC (-27.62‰ ± 0.24‰), δN (2.88‰ ± 0.85‰), and δO (28.02‰ ± 1.30‰) of RRJ were significantly different from other RJs. The δC, δH, and δO in CRJ and SRJ were strongly correlated with temperature and precipitation, suggesting that these isotopes are influenced by environmental elements such as sunlight and rainfall. In addition, the artificial neural network (ANN) model was superior to the random forest (RF) model in terms of accuracy, sensitivity, and specificity. This study revealed that combining stable isotopes with ANN models and the unique correlation between stable isotopes and environmental factors could provide promising ideas for monitoring the authenticity of RJ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2023.113360 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!