Shrimp is a popular internationally traded shellfish due to its unique taste, texture, and nutritional value. Shrimp is highly perishable because it has enough free amino acids, high moisture levels, non-nitrogenous compounds used for microbial growth, and melanosis. Shrimp spoilage after death is caused by various reasons, like autolysis (endogenous proteinases actions during shrimp storage), growth of spoilage microorganisms, ATP degradation, melanin formation, and lipid peroxidation. A microbial byproduct, total volatile basic nitrogen, is one of the major reasons for the generation of foul odors from shrimp spoilage. Shrimp freshness monitoring is crucial for market sellers and exporters. Traditional methods for estimating shrimp freshness are expensive and inaccessible to the general public. Sensors are rapid, sensitive, selective, and portable food toxins' detection tools, devoid of expensive instruments, skilled people, sample pretreatment, and a long detection time. This review addresses shrimp spoilage causes. The mechanisms of different stages of shrimp spoilage after death, like rigor mortis, dissolution of rigor mortis, autolysis, and microbial spoilage mechanisms, are discussed. This review highlights the last five years' advances in shrimp freshness detection sensors and indicators like colorimetric pH indicators, fluorescence sensors, electronic noses, and biosensors, their working principles, and their sensitivities. Commercially available indicators and sensors for shrimp spoilage monitoring are also discussed. A review highlighting the applications of the different sensors and indicators for monitoring shrimp freshness is unavailable to date. Challenges and future perspectives in this field are explained at the end.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2023.113270 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
This research is focused on the formulation and testing of green visual pH-sensitive indicators based on natural extracts from Curcuma Longa (CUR) and Lambrusco wine pomace (LAM), an Italian wine variety, incorporated into rice starch/pectin/alginate matrixes for non-destructively detecting shrimps freshness in real-time. The effect of the mixed indicators and their synergic combination on the properties and performances of indicators was investigated. Both the extracts and their combination showed pronounced pH responsiveness.
View Article and Find Full Text PDFSensors (Basel)
November 2024
College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830002, China.
BF, volatile amines (VOAs), and biogenic amines (BAs) are the key indicators in chemical reaction catalysis and food quality monitoring. In this study, we present two types of fluorescent sensors, a hydrazone ligand (HL)-based fluorescent sensor for BF detection and a novel sensor array using six boron difluoride (BF) hydrazone complexes (BFHs) for monitoring VOAs and BAs. Spectral research indicates that the interaction mechanism between the HLs and BF is based on intramolecular charge transfer (ICT).
View Article and Find Full Text PDFFoods
December 2024
Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Rio Verde, Rio Verde 75901-970, GO, Brazil.
The preservation of fish and seafood represents a significant challenge for the food industry due to these products' high susceptibility to microbial spoilage. Essential oils (EOs), classified as Generally Recognized as Safe (GRAS), have become a natural alternative to synthetic preservatives due to their antimicrobial and antioxidant properties. This review aims to analyze the specific potential of EOs in extending the shelf life of fish and seafood products, offering a natural and effective preservation solution.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Cold plasma (CP) is an emerging technology employed to safeguard highly perishable food items, particularly aquatic products such as shrimp. Due to its significant amount of moisture, superior protein composition that contains important amino acids, and unsaturated fatty acid content, shrimp are susceptible to microbial deterioration and overall alterations in their physical and chemical characteristics. Such spoilage not only diminishes the nutritional value of shrimp but also has the potential to generate harmful substances, rendering it unsuitable for consumption.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!