The physicochemical properties of starch vary depending on the botanical sources, thereby influencing the gelatinisation/retrogradation properties and subsequently affecting the hydrogels characteristics. This study aimed to assess the influence of botanical sources influence on starch and hydrogel properties using non-conventional starch derived from guabiju, pinhão, and uvaia seeds. Hydrogels were prepared by starch gelatinisation followed by 6 h ageing period at room temperature (20 ± 2 °C) and subjected to five freeze-thaw cycles. Pinhão starch exhibited a higher viscosity peak and breakdown, along with a lower final viscosity and setback, compared to guabiju and uvaia starches. The significantly different pasting properties influenced the porous microstructure, water absorption (p-value: 0.01), and resistance of the hydrogels (p-value: 0.01). The guabiju starch hydrogels showed a uniform pore structure without cavities, whereas pinhão and uvaia starch hydrogels exhibited agglomerated and spongy pore structures. Furthermore, the guabiju starch hydrogel demonstrated the lowest water absorption (4.56 g/g) and the highest compression resistance (1448.50 g) among all the studied starch hydrogels. In contrast, the pinhão starch hydrogel showed the highest water absorption (7.43 g/; p-value: 0.01) among all studied starch hydrogels. The hardness of uvaia starch hydrogel did not differ significantly from the guabiju and pinhão starch hydrogel. The different non-conventional starches reveal important variations in the hydrogels characteristics. This provides insights into how amylose and amylopectin interact and present alternatives for using these unique starch-based hydrogels in diverse applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2023.113243 | DOI Listing |
Biomaterials
December 2024
Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:
Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:
While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China. Electronic address:
Invasive surgical methods are the current standard for hemostasis and wound closure. In recent years, injectable hydrogels prepared from natural biomacromolecules have shown promise as tissue adhesives to overcome their shortcomings due to their high hydrophilicity and biocompatibility, but the inherent properties of unmodified biomolecules remain a major challenge in their application. In this paper, a hydrogel (DS/Gel-CDH) with self-healing, injectable and adhesive functions was constructed by Schiff base crosslinking between carbonyl hydrazide modified gelatin (Gel-CDH) and dialdehyde starch (DS).
View Article and Find Full Text PDFMater Today Bio
December 2024
Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
Hepatocellular carcinoma (HCC) is a common and deadly cancer, often diagnosed at advanced stages, limiting surgical options. Transcatheter arterial chemoembolization (TACE) is a primary treatment for inoperable and involves the use of drug-eluting microspheres to slowly release chemotherapy drugs. However, patient responses to TACE vary, with some experiencing tumor progression and recurrence.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Chemistry Postgraduation Program, Federal University of Piaui-UFPI, Teresina 64049-550, PI, Brazil.
Internal curing is a process based on the addition of materials that function as water reservoirs in cementitious media. Superabsorbent hydrogels are an alternative that can be used as an internal curing agent, as they have the ability to absorb and release water in a controlled manner. In the present work, superabsorbent hydrogels based on crosslinked polyacrylamide in the presence of starch and sugarcane bagasse ash (SCBA) were developed and applied to mortars as an internal curing agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!