Particle size and water content impact breakdown and starch digestibility of chickpea snacks during in vitro gastrointestinal digestion.

Food Res Int

Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA; Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand. Electronic address:

Published: November 2023

Chickpeas are an agriculturally-important legume that are an excellent source of protein, fiber, and minerals. Developing chickpea-based snacks could provide consumers with snack products rich in protein and other nutrients. In this study, chickpea puree (high moisture content) and cracker (low moisture content) were each produced with large (7 mm sieve; coarse) or small (2 mm sieve; fine) particle size to investigate the impact of initial particle size and moisture content on particle breakdown, starch hydrolysis, and protein hydrolysis during in vitro digestion. All treatments underwent static in vitro oral digestion, dynamic gastric digestion in the Human Gastric Simulator (HGS), and static in vitro small intestinal digestion. The emptying rate from the HGS was significantly (p < 0.05) higher for fine puree compared to the other treatments, due to higher saturation ratio and smaller initial particle size. The reducing sugars and free amino groups released (representing starch and protein hydrolysis, respectively) from fine puree were higher than coarse puree, and fine cracker was higher than coarse cracker due to the influence of initial particle size. For example, after 360 min total in vitro digestion, the starch hydrolysis of the fine cracker (48.1 ± 3.2%) was significantly higher than (p < 0.05) the coarse cracker (36.3 ± 5.8%). Overall, crackers had higher protein and starch hydrolysis compared to puree in the liquid phase during digestion. The study showed that both the smaller initial particle size and drying significantly (p < 0.05) increased the particle size reduction during gastric digestion and starch and protein digestibility in chickpea-based snacks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113201DOI Listing

Publication Analysis

Top Keywords

particle size
12
moisture content
12
breakdown starch
8
static vitro
8
digestion
5
particle
4
size water
4
content
4
water content
4
content impact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!