Background: Loss of P-glycoprotein (P-gp) at the blood-brain barrier contributes to amyloid-β (Aβ) brain accumulation in Alzheimer's disease (AD). Using transgenic human amyloid precursor protein (hAPP)-overexpressing mice (Tg2576), we previously showed that Aβ triggers P-gp loss by activating the ubiquitin-proteasome pathway, which leads to P-gp degradation. Furthermore, we showed that inhibiting the ubiquitin-activating enzyme (E1) prevents P-gp loss and lowers Aβ accumulation in the brain of hAPP mice. Based on these data, we hypothesized that repurposing the FDA-approved proteasome inhibitor, bortezomib (Velcade; BTZ), protects blood-brain barrier P-gp from degradation in hAPP mice in vivo.

Methods: We treated hAPP mice with the proteasome inhibitor BTZ or a combination of BTZ with the P-gp inhibitor cyclosporin A (CSA) for 2 weeks. Vehicle-treated wild-type (WT) mice were used as a reference for normal P-gp protein expression and transport activity. In addition, we used the opioid receptor agonist loperamide as a P-gp substrate in tail flick assays to indirectly assess P-gp transport activity at the blood-brain barrier in vivo. We also determined P-gp protein expression by Western blotting, measured P-gp transport activity levels in isolated brain capillaries with live cell confocal imaging and assessed Aβ plasma and brain levels with ELISA.

Results: We found that 2-week BTZ treatment of hAPP mice restored P-gp protein expression and transport activity in brain capillaries to levels found in WT mice. We also observed that hAPP mice displayed significant loperamide-induced central antinociception compared to WT mice indicating impaired P-gp transport activity at the blood-brain barrier of hAPP mice in vivo. Furthermore, BTZ treatment prevented loperamide-induced antinociception suggesting BTZ protected P-gp loss in hAPP mice. Further, BTZ-treated hAPP mice had lower Aβ40 and Aβ42 brain levels compared to vehicle-treated hAPP mice.

Conclusions: Our data indicate that BTZ protects P-gp from proteasomal degradation in hAPP mice, which helps to reduce Aβ brain levels. Our data suggest that the proteasome system could be exploited for a novel therapeutic strategy in AD, particularly since increasing Aβ transport across the blood-brain barrier may prove an effective treatment for patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559617PMC
http://dx.doi.org/10.1186/s12987-023-00470-zDOI Listing

Publication Analysis

Top Keywords

happ mice
36
blood-brain barrier
24
transport activity
20
brain levels
16
p-gp
15
mice
13
aβ brain
12
p-gp loss
12
p-gp protein
12
protein expression
12

Similar Publications

Background: Alzheimer's Disease (AD) is the leading cause of dementia globally, affecting around 50 million people and marked by cognitive decline and the accumulation of β-amyloid plaques and hyperphosphorylated tau. The limited treatment options and numerous failed clinical trials targeting β-amyloid (Aβ) highlight the need for novel approaches. Lowered proteasome activity is a consistent feature in AD, particularly in the hippocampus.

View Article and Find Full Text PDF

Preventative treatment for Alzheimer's Disease (AD) is dire, yet mechanisms underlying early regional vulnerability remain unknown. In AD, one of the earliest pathophysiological correlates to cognitive decline is hyperexcitability, which is observed first in the entorhinal cortex. Why hyperexcitability preferentially emerges in specific regions in AD is unclear.

View Article and Find Full Text PDF

Background: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-β protein (Aβ) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aβ pathology and tauopathy in vivo.

Methods: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses.

View Article and Find Full Text PDF

The increasing incidence of cardiovascular diseases has created an urgent need for safe and effective anti-thrombotic agents. Leech, as a traditional Chinese medicine, has the effect of promoting blood circulation and removing blood stasis, but its real material basis and mechanism of action for the treatment of diseases such as blood stasis and thrombosis have not been reported. In this study, (WPW), (HNW) and (WAW) were hydrolyzed by biomimetic enzymatic hydrolysis to obtain the active peptides of WPW (APP), the active peptides of HNW (APH) and the active peptides of WAW (APA), respectively.

View Article and Find Full Text PDF

Increasing evidence supports a role for deficient Wnt signaling in Alzheimer's disease (AD). Studies reveal that the secreted Wnt antagonist Dickkopf-3 (DKK3) colocalizes to amyloid plaques in AD patients. Here, we investigate the contribution of DKK3 to synapse integrity in healthy and AD brains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!