Traditionally, the Coulomb repulsion or Peierls instability causes the metal-insulator phase transitions in strongly correlated quantum materials. In comparison, magnetic stress is predicted to drive the metal-insulator transition in materials exhibiting strong spin-lattice coupling. However, this mechanism lacks experimental validation and an in-depth understanding. Here we demonstrate the existence of the magnetic stress-driven metal-insulator transition in an archetypal material, chromium nitride. Structural, magnetic, electronic transport characterization, and first-principles modeling analysis show that the phase transition temperature in CrN is directly proportional to the strain-controlled anisotropic magnetic stress. The compressive strain increases the magnetic stress, leading to the much-coveted room-temperature transition. In contrast, tensile strain and the inclusion of nonmagnetic cations weaken the magnetic stress and reduce the transition temperature. This discovery of a new physical origin of metal-insulator phase transition that unifies spin, charge, and lattice degrees of freedom in correlated materials marks a new paradigm and could lead to novel device functionalities.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.126302DOI Listing

Publication Analysis

Top Keywords

magnetic stress
16
metal-insulator transition
12
magnetic stress-driven
8
stress-driven metal-insulator
8
metal-insulator phase
8
phase transition
8
transition temperature
8
magnetic
7
transition
7
metal-insulator
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!