Accurate prediction of in vivo protein abundances by coupling constraint-based modelling and machine learning.

Metab Eng

Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany; Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany. Electronic address:

Published: November 2023

Quantification of how different environmental cues affect protein allocation can provide important insights for understanding cell physiology. While absolute quantification of proteins can be obtained by resource-intensive mass-spectrometry-based technologies, prediction of protein abundances offers another way to obtain insights into protein allocation. Here we present CAMEL, a framework that couples constraint-based modelling with machine learning to predict protein abundance for any environmental condition. This is achieved by building machine learning models that leverage static features, derived from protein sequences, and condition-dependent features predicted from protein-constrained metabolic models. Our findings demonstrate that CAMEL results in excellent prediction of protein allocation in E. coli (average Pearson correlation of at least 0.9), and moderate performance in S. cerevisiae (average Pearson correlation of at least 0.5). Therefore, CAMEL outperformed contending approaches without using molecular read-outs from unseen conditions and provides a valuable tool for using protein allocation in biotechnological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2023.09.014DOI Listing

Publication Analysis

Top Keywords

protein allocation
16
machine learning
12
protein
8
protein abundances
8
constraint-based modelling
8
modelling machine
8
prediction protein
8
average pearson
8
pearson correlation
8
accurate prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!