Precision medicine research has seen growing efforts to increase participation of communities that have been historically underrepresented in biomedical research. Marginalized racial and ethnic communities have received particular attention, toward the goal of improving the generalizability of scientific knowledge and promoting health equity. Against this backdrop, research has highlighted three key issues that could impede the promise of precision medicine research: issues surrounding (dis)trust and representation, challenges in translational efforts to improve health outcomes, and the need for responsive community engagement. Existing efforts to address these challenges have predominantly centered on single-dimensional demographic criteria such as race, ethnicity, or sex, while overlooking how these and additional variables, such as disability, gender identity, and socioeconomic factors, can confound and jointly impact research participation. We argue that increasing cohort diversity and the responsiveness of precision medicine research studies to community needs requires an approach that transcends conventional boundaries and embraces a more nuanced, multi-layered, and intersectional framework for data collection, analyses, and implementation. We draw attention to gaps in existing work, highlight how overlapping layers of marginalization might shape and substantiate one another and affect the precision-medicine research cycle, and put forth strategies to facilitate equitable advantages from precision-medicine research to diverse participants and internally heterogeneous communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577071 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2023.08.013 | DOI Listing |
Hum Brain Mapp
January 2025
Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany.
The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.
View Article and Find Full Text PDFJ Neurosci Res
January 2025
Luhe Institute of Neuroscience, Capital Medical University, Beijing, China.
Despite significant advancements in achieving high recanalization rates (80%-90%) for large vessel occlusions through mechanical thrombectomy, the issue of "futile recanalization" remains a major clinical challenge. Futile recanalization occurs when over half of patients fail to experience expected symptom improvement after vessel recanalization, often resulting in severe functional impairment or death. Traditionally, this phenomenon has been attributed to inadequate blood flow and reperfusion injury.
View Article and Find Full Text PDFMetastasis continues to pose a significant challenge in tumor treatment. Evidence indicates that choline dehydrogenase (CHDH) is crucial in tumorigenesis. However, the functional role of CHDH in colorectal cancer (CRC) metastasis remains unreported.
View Article and Find Full Text PDFHum Reprod Open
November 2024
Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Study Question: How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery?
Summary Answer: AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area.
What Is Known Already: Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established.
Natl Sci Rev
January 2025
CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!