Recycling and reusing of nutrient media in microalgal cultivation are important strategies to reduce water consumption and nutrient costs. However, these approaches have limitations, e.g., a decrease in biomass production, (because as reused media can inhibit biomass growth). To address these limitations, we applied a novel membrane filtration‒electrolysis‒ultraviolet hybrid water treatment method capable of laboratory-to-large-scale operation to increase biomass productivity and enable nutrient medium disinfection and recycling. In laboratory-scale experiments, electrolysis effectively remove the biological contaminants from the spent nutrient medium, resulting in a high on-site removal efficiency of dissolved organic carbon (DOC; 80.3 ± 5 %) and disinfection (99.5 ± 0.2 %). Compared to the results for the recycling of nutrient medium without water treatment, electrolysis resulted in a 1.5-fold increase in biomass production, which was attributable to the removal of biological inhibitors from electrochemically produced oxidants (mainly OCl). In scaled-up applications, the hybrid system improved the quality of the recycled nutrient medium, with 85 ± 2 % turbidity removal, 75 ± 3 % DOC removal, and 99.5 ± 2 % disinfection efficiency, which was beneficial for biomass growth by removing biological inhibitors. After applying the hybrid water treatment method, we achieved a Spirulina biomass production of 0.47 ± 0.03 g L, similar to that obtained using a fresh medium (0.53 ± 0.02 g L). The on-site disinfection process described herein is practical and offers a cost-saving and environmental friendly alternative for nutrient medium recycling and reusing water in mass and sustainable cultivation of microalgae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120683DOI Listing

Publication Analysis

Top Keywords

nutrient medium
24
water treatment
16
biomass production
12
recycling nutrient
8
recycling reusing
8
biomass growth
8
hybrid water
8
treatment method
8
increase biomass
8
biological inhibitors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!