A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of different production methods on physicochemical properties and adsorption capacities of biochar from sewage sludge and kitchen waste: Mechanism and correlation analysis. | LitMetric

Different pyrolysis methods, parameters and feedstocks result in biochars with different properties, structures and removal capacities for heavy metals. However, the role of each property on adsorption capacity and corresponding causal relationships remain unclear. Here, we investigated various physicochemical properties of biochar produced via three different methods and two different feedstocks to clarify influences of biomass sources and pyrolysis processes on biochar properties and its heavy metal adsorption performance. Experimental results showed biochars were more aromatic and contained more functional groups after hydrothermal carbonization, while they had developed pores and higher surface areas produced by anaerobic pyrolysis. The inclusion of oxygen resulted in more complete carbonization and higher CEC biochar. Different biochar properties resulted in different adsorption capacities. Biochar produced by aerobic calcination showed higher adsorption efficiency for Cu and Pb. Correlation analysis proved that pH, cation exchange capacity and degree of carbonization positively affected adsorption, while organic matter content and aromaticity were unfavorable for adsorption. Microstructure and components determined biochar macroscopic properties and ultimate adsorption efficiency for metal ions. This study identifies the degree of correlation and pathways of each property on adsorption, which provides guidance for targeted modification of biochar to enhance its performance in heavy metal removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132690DOI Listing

Publication Analysis

Top Keywords

adsorption
9
physicochemical properties
8
properties adsorption
8
adsorption capacities
8
biochar
8
capacities biochar
8
correlation analysis
8
property adsorption
8
biochar produced
8
biochar properties
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!