The pyrolysis and in line steam reforming of different types of representative agroforestry biomass wastes (pine wood, citrus wastes and rice husk) was performed in a two-reactor system made up of a conical spouted bed and a fluidized bed. The pyrolysis step was carried out at 500 °C, and the steam reforming at 600 °C with a space time of 20 g min g and a steam/biomass ratio (S/B) of 4. A study was conducted on the effect that the pyrolysis volatiles composition obtained with several biomasses has on the reforming conversion, product yields and H production. The different composition of the pyrolysis volatiles obtained with the three biomasses studied led to differences in the initial activity and, especially, in the catalyst deactivation rate. Initial conversions higher than 99% were obtained in all cases and the H production obtained varied in the 6.7-11.2 wt% range, depending on the feedstock used. The stability of the catalysts decreased depending on the feedstock as follows: pine wood ≫ citrus waste > rice husk. A detailed assessment of the mechanisms of catalyst deactivation revealed that coke deposition is the main cause of catalyst decay in all the runs. However, the volatile composition derived from the pyrolysis of citrus waste and rice husk involved the formation of an encapsulating coke, which severely blocked the catalyst pores, leading to catalyst deactivation during the first minutes of reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119071 | DOI Listing |
Int J Mol Sci
November 2024
Research Institute of Hydrogen Energy, Kuban State University, Krasnodar 350040, Russia.
Thin-film membranes of Pd-Ag and Pd-Cu alloys capable of releasing hydrogen in a wide temperature range have been developed. The surface activation of the membranes with a nanostructured coating made it possible to intensify hydrogen transport through Pd-containing membranes at low temperatures. This effect was achieved by accelerating limiting surface processes by increasing the active area of the membrane.
View Article and Find Full Text PDFSci Total Environ
December 2024
Research and Innovation Center on CO(2) and Hydrogen (RICH Center), Chemical and Petroleum Engineering Department, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
Meeting current decarbonization targets requires a shift to a hydrogen energy nexus, yet, water is a valuable resource for hydrogen production, shifting the perspective to the use of HS instead within the context of circular economy. A comprehensive understanding of the environmental impacts, using a cradle-to-gate life cycle assessment (LCA), was developed focusing on the operation of hydrogen sulfide-methane reforming (HSMR) for H production benchmarked to conventional technologies, steam methane reforming (SMR) and SMR + carbon capture (CC), as feedstock to produce sustainable fuels (i.e.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia.
Sci Rep
November 2024
College of Music, Sookmyung Women's University, Seoul, 04310, South Korea.
In recent times, characterized by the rapid advancement of science and technology, the educational system has continuously evolved. Within this modern educational landscape, Science, Technology, Engineering, Arts, and Mathematics (STEAM) education has emerged as a prominent pedagogical paradigm, gaining substantial popularity in college-level instruction and capturing widespread societal attention. Notably, the cultivation of audio-visual aesthetic proficiency occupies a central role within this educational approach, prioritizing the enhancement of aesthetic sensibilities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States.
Tri-reforming methane with CO, O, and HO mixtures requires a delicate balance of dry-reforming, partial oxidation, and steam-reforming reactions to improve the CO conversion and H/CO ratio. Nickel-alumina has been reported before for the tri-reforming of methane, although at higher temperatures (>900 °C). This is because the current approaches for nickel-alumina synthesis are ineffective in generating stronger catalyst-support interactions necessary to maintain higher active sites and stall carbon nanotube (CNT) deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!