The pyrolysis and in line steam reforming of different types of representative agroforestry biomass wastes (pine wood, citrus wastes and rice husk) was performed in a two-reactor system made up of a conical spouted bed and a fluidized bed. The pyrolysis step was carried out at 500 °C, and the steam reforming at 600 °C with a space time of 20 g min g and a steam/biomass ratio (S/B) of 4. A study was conducted on the effect that the pyrolysis volatiles composition obtained with several biomasses has on the reforming conversion, product yields and H production. The different composition of the pyrolysis volatiles obtained with the three biomasses studied led to differences in the initial activity and, especially, in the catalyst deactivation rate. Initial conversions higher than 99% were obtained in all cases and the H production obtained varied in the 6.7-11.2 wt% range, depending on the feedstock used. The stability of the catalysts decreased depending on the feedstock as follows: pine wood ≫ citrus waste > rice husk. A detailed assessment of the mechanisms of catalyst deactivation revealed that coke deposition is the main cause of catalyst decay in all the runs. However, the volatile composition derived from the pyrolysis of citrus waste and rice husk involved the formation of an encapsulating coke, which severely blocked the catalyst pores, leading to catalyst deactivation during the first minutes of reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119071DOI Listing

Publication Analysis

Top Keywords

steam reforming
12
catalyst deactivation
12
agroforestry biomass
8
biomass wastes
8
pyrolysis steam
8
rice husk
8
pyrolysis volatiles
8
depending feedstock
8
pyrolysis
6
catalyst
5

Similar Publications

Thin-film membranes of Pd-Ag and Pd-Cu alloys capable of releasing hydrogen in a wide temperature range have been developed. The surface activation of the membranes with a nanostructured coating made it possible to intensify hydrogen transport through Pd-containing membranes at low temperatures. This effect was achieved by accelerating limiting surface processes by increasing the active area of the membrane.

View Article and Find Full Text PDF

Life cycle assessment on the role of HS-based hydrogen via HS-methane reforming for the production of sustainable fuels.

Sci Total Environ

December 2024

Research and Innovation Center on CO(2) and Hydrogen (RICH Center), Chemical and Petroleum Engineering Department, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.

Meeting current decarbonization targets requires a shift to a hydrogen energy nexus, yet, water is a valuable resource for hydrogen production, shifting the perspective to the use of HS instead within the context of circular economy. A comprehensive understanding of the environmental impacts, using a cradle-to-gate life cycle assessment (LCA), was developed focusing on the operation of hydrogen sulfide-methane reforming (HSMR) for H production benchmarked to conventional technologies, steam methane reforming (SMR) and SMR + carbon capture (CC), as feedstock to produce sustainable fuels (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The increasing levels of carbon dioxide in the atmosphere have significant adverse effects, prompting research into materials for carbon capture, with layered double hydroxides (LDHs) showing promise due to their high surface area and CO adsorption capabilities.
  • Despite existing reviews on carbon capture materials, there is a lack of comprehensive reviews specifically addressing LDH-based materials, highlighting the need for updated analysis in this rapidly evolving field.
  • This review article aims to fill that gap by providing an overview of recent advancements, synthesis methods, performance factors, and future research directions in CO capture using LDHs, while also discussing existing challenges and knowledge gaps.
View Article and Find Full Text PDF

In recent times, characterized by the rapid advancement of science and technology, the educational system has continuously evolved. Within this modern educational landscape, Science, Technology, Engineering, Arts, and Mathematics (STEAM) education has emerged as a prominent pedagogical paradigm, gaining substantial popularity in college-level instruction and capturing widespread societal attention. Notably, the cultivation of audio-visual aesthetic proficiency occupies a central role within this educational approach, prioritizing the enhancement of aesthetic sensibilities.

View Article and Find Full Text PDF

Tri-reforming methane with CO, O, and HO mixtures requires a delicate balance of dry-reforming, partial oxidation, and steam-reforming reactions to improve the CO conversion and H/CO ratio. Nickel-alumina has been reported before for the tri-reforming of methane, although at higher temperatures (>900 °C). This is because the current approaches for nickel-alumina synthesis are ineffective in generating stronger catalyst-support interactions necessary to maintain higher active sites and stall carbon nanotube (CNT) deposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!