Since the 1960 s, our health has been compromised by exposure to over 350,000 newly introduced toxic substances, contributing to the current pandemic in allergic, autoimmune and metabolic diseases. The "Epithelial Barrier Theory" postulates that these diseases are exacerbated by persistent periepithelial inflammation (epithelitis) triggered by exposure to a wide range of epithelial barrier-damaging substances as well as genetic susceptibility. The epithelial barrier serves as the body's primary physical, chemical, and immunological barrier against external stimuli. A leaky epithelial barrier facilitates the translocation of the microbiome from the surface of the afflicted tissues to interepithelial and even deeper subepithelial locations. In turn, opportunistic bacterial colonization, microbiota dysbiosis, local inflammation and impaired tissue regeneration and remodelling follow. Migration of inflammatory cells to susceptible tissues contributes to damage and inflammation, initiating and aggravating many chronic inflammatory diseases. The objective of this review is to highlight and evaluate recent studies on epithelial physiology and its role in the pathogenesis of chronic diseases in light of the epithelial barrier theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.smim.2023.101846 | DOI Listing |
Cell Immunol
December 2024
Defence Institute of Physiology and Allied Sciences, Delhi 110054, India. Electronic address:
The gastrointestinal (GI) tract is susceptible to damage under high altitude hypoxic conditions, leading to gastrointestinal discomfort and intestinal barrier injury. Sodium butyrate, a short-chain fatty acid present as a metabolite in the gut, has emerged as a promising therapeutic agent due to its ability to act as an immunomodulatory agent and restore intestinal barrier integrity. This study aimed to explore the mechanism by which sodium butyrate exhibits anti inflammatory effect on intestinal epithelial cells.
View Article and Find Full Text PDFCurr Oncol
December 2024
Hudson Institute of Medical Research, Clayton 3168, Australia.
Precision medicine has revolutionised targeted cancer treatments; however, its implementation in ovarian cancer remains challenging. Diverse tumour biology and extensive heterogeneity in ovarian cancer can limit the translatability of genetic profiling and contribute to a lack of biomarkers of treatment response. This review addresses the barriers in precision medicine for ovarian cancer, including obtaining adequate and representative tissue samples for analysis, developing functional and standardised screening methods, and navigating data infrastructure and management.
View Article and Find Full Text PDFGels
December 2024
The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel.
Buccal drug delivery offers a promising alternative for avoiding gastrointestinal degradation and first-pass metabolism. However, enhancing the buccal epithelial barrier's permeability remains challenging. This study explores the effects of ethanolic extracts from (CM), (CMC), and (ORD) on buccal epithelium permeability in vitro using a TR146 cell-based model.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Immunology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, China.
Objectives: To investigate the effects of asperosaponin VI (AVI) on intestinal epithelial cell apoptosis and intestinal barrier function in a mouse model of Crohn's disease (CD)-like colitis and explore its mechanisms.
Methods: Male C57BL/6 mice with TNBS-induced CD-like colitis were treated with saline or AVI (daily dose 150 mg/kg) by gavage for 6 days. The changes in body weight, colon length, DAI scores, and colon pathologies of the mice were observed, and the expressions of inflammatory factors and tight injunction proteins were detected using ELISA and RT-qPCR.
J Allergy Clin Immunol Pract
December 2024
Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland.
Human activities, primarily the burning of fossil fuels, widespread deforestation, soil erosion or machine-intensive farming methods, manufacturing, food processing, mining, and construction iron, cement, steel, and chemicals industry, have been the main drivers of the observed increase in Earth's average surface temperature and climate change. Rising global temperatures, extreme weather events, ecosystems disruption, agricultural impacts, water scarcity, problems in access to good quality water, food and housing, and profound environmental disruptions such as biodiversity loss and extreme pollution are expected to steeply increase the prevalence and severity of acute and chronic diseases. Its long-term effects cannot be adequately predicted or mitigated without a comprehensive understanding of the adaptive ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!