Koumine ameliorates neuroinflammation by regulating microglia polarization via activation of Nrf2/HO-1 pathway.

Biomed Pharmacother

School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China. Electronic address:

Published: November 2023

Background: Gelsemium elegans (Gardner & Chapm.) Benth (G. elegans) has been widely used as a traditional folk medicine in China and Southeast Asia. As the most abundant alkaloid in G. elegans, Koumine (KM) has been revealed the effect of inflammatory attenuation modulating by macrophage activation and polarization.

Purpose: This study aimed to explore the effect of KM on modulation of microglia polarization that led to the suppression of neuroinflammation and further improved neurodegenerative behavior.

Methods: Inflammatory mediators, microglia M1 and M2 phenotype markers and Nrf2/HO-1 pathway related protein were assessed in LPS-induced BV2 cells and LPS-treated mice by RT-PCR, immunohistochemistry, immunofluorescence and Western blotting. Moreover, the learning and memory abilities of mice were evaluated by Morris water maze test, and the neuronal damage was evaluated by the Nissl staining.

Results: KM attenuated LPS-induced viability and morphological changes in BV2 microglial cells. Our findings showed that KM activated the Nrf2/HO-1 signaling pathway to promote phenotypic switch from M1 to M2 phenotypes. This switch suppresses the release of inflammatory mediators in LPS-induced BV2 cells. Meanwhile, KM attenuated neuroinflammation through modulating microglia polarization and subsequently reversed the behavioral alterations in LPS-induced mice model of neuroinflammation.

Conclusions: KM may alleviate neuroinflammation by regulating microglia polarization with the involvement of Nrf2/HO-1 pathway, resulting of the neuroprotective effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.115608DOI Listing

Publication Analysis

Top Keywords

microglia polarization
16
nrf2/ho-1 pathway
12
neuroinflammation regulating
8
regulating microglia
8
inflammatory mediators
8
lps-induced bv2
8
bv2 cells
8
microglia
5
koumine ameliorates
4
neuroinflammation
4

Similar Publications

Crisdesalazine alleviates inflammation in an experimental autoimmune encephalomyelitis multiple sclerosis mouse model by regulating the immune system.

BMC Neurosci

January 2025

Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.

Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Xuanwu Hospital of Capital Medical University, Beijing, Beijing, China.

Background: Alzheimer's disease (AD), also known as senile dementia, is the most common degenerative disease of the central nervous system. Neuroinflammation is currently believed to be a crucial factor in the progression of AD, while its exact mechanism remains unclear.

Method: APP/PS1 AD mice were treated with a natural active ingredient tetrahydroxy stilbene glucoside (TSG) at 40 mg/kg/day and 80 mg/kg/day respectively for 5 consecutive months, and then the Morris water maze test (MWM) and the novel object recognition test were performed to assess the effect of TSG on the cognitive and memory ability of AD mice.

View Article and Find Full Text PDF

Background: Neuroinflammation is a key component of Alzheimer's Disease (AD) pathology. Triggering receptor expressed on myeloid cells 2 (TREM2) is crucial to microglial involvement in AD, mediating trem2-dependent activation and Disease-Associated Microglia (DAM) polarization. However, GWAS revealed that loss-of-function mutations of its encoding gene are an important risk factor for AD.

View Article and Find Full Text PDF

Background: Microglial reactivity and neuroinflammation are crucial pathological processes in Alzheimer's Disease (AD). Several attempts to develop a treatment by supressing the immune response in AD have been made, yet these yielded very limited results. Recent studies suggest contrasting effects of microglial reactivity, indicating a biphasic response with both beneficial and deleterious effects at distinct stages of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!