A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Shape-model scaling is more robust than linear scaling to marker placement error. | LitMetric

Shape-model scaling is more robust than linear scaling to marker placement error.

J Biomech

Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Engineering Science, University of Auckland, Auckland, New Zealand. Electronic address:

Published: November 2023

When reconstructing bone geometry to calculate joint kinematics, shape-model scaling can be more accurate and repeatable than linear scaling given the same anatomical landmarks. This study perturbed anatomical landmarks from optical motion capture and determined the robustness of shape-model scaling to misplaced markers compared to a traditional approach of linear scaling. We hypothesised that shape-model scaling would be less susceptible to variance in marker positions compared to linear scaling. The positions of hip joint centres and femoral/tibial segment lengths across perturbations were compared to determine each scaling method's range of geometric variation. The standard deviation (SD) of the hip joint centre location from the shape model had a maximum of 1.4 mm, compared to 4.2 mm for linear scaling. Femoral and tibial segments displayed SD's of 5.4 mm and 5.2 mm when shape-model scaled, compared to 9.2 mm and 9.5 mm with linear scaling, respectively, thus supporting our hypothesis. Geometric constraints within a shape model provide robustness to marker misplacement providing potential improvements in repeatability and data exchange.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2023.111805DOI Listing

Publication Analysis

Top Keywords

linear scaling
24
shape-model scaling
16
scaling
10
anatomical landmarks
8
hip joint
8
shape model
8
linear
6
shape-model
5
compared
5
scaling robust
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!