Amino acids are required to make protein. The deficiency of amino acids leads to a lack of sleep and mood. Among various amino acids, we conducted the adsorption studies of alanine and asparagine amino acids on a novel one-dimensional material, chair graphene nanotube. The stability of the chair graphene nanotube is ensured with the negative formation energy, which is -6.490 eV/atom. The energy band gap of bare chair graphene nanotube is 1.022 eV, which possesses a semiconductor nature. The stable chair graphene nanotube is used as adsorbing material for alanine and asparagine amino acids. Besides, alanine and asparagine are physisorbed on chair graphene nanotubes that are confirmed by the range of adsorption energy from -0.107 eV to -0.718 eV. Upon adsorption of amino acids, the charge transfer outcome shows that chair graphene nanotubes behave as donors of electrons to alanine and asparagine. Further, the changes in the band gap of the chair graphene nanotube are noticed from the results of band structure and PDOS spectrum. The changes in the electron density also reveal the changes in the electronic properties of the chair graphene nanotube owing to alanine and asparagine sorption. The proposed report portrays the adsorption attributes of alanine and asparagine amino acids on 1D chair graphene nanotubes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2023.108637 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!