A systematic effort has been described to grow ternary GeSiSn semiconductors on silicon with high Sn concentrations spanning the 9.5-21.2% range. The ultimate goal is not only to produce direct band gap materials well into the infrared region of the spectrum but also to approach a critical concentration () for which further additions of Si would decrease─rather than increase─the band gap. This counterintuitive behavior is expected as a result of the giant bowing parameter in the compositional dependence of the band gap associated with the presence of Si-Sn pairs. The growth approach in this study was based on a chemical vacuum deposition method that uses SiH, GeH, and SnD or SnH as the sources of Si, Ge, and Sn, respectively. A fixed Si concentration near = 0.05-0.07 was chosen to focus the exploration of the compositional space. A first family of samples was grown of Ge-buffered Si substrates. For Sn concentrations < 0.12, it was found that the samples relaxed their mismatch strain in situ during growth, resulting in high Sn content films that had relatively low levels of strain and exhibited photoluminescence signals that demonstrated direct band gap behavior for the first time. The device potential of these materials was also demonstrated by fabricating a prototype photodiode with low dark currents. The optical studies suggest that the above-mentioned critical concentration is close to = 0.2. As the growth temperature was lowered in an effort to reach such values, Sn concentrations as high as = 0.15 were obtained, but the films grew fully strained with compressive levels as high as 1.7%. To increase the Sn concentration beyond = 0.15, a new strategy was adopted, in which the Ge buffer layer was eliminated, and the ternary alloy was grown directly on Si. The much higher lattice mismatch between the GeSiSn layer and the Si substrate caused strain relaxation right at the film/substrate interface, and the subsequent films grew with much lower levels of strain. This made it possible to lower the growth temperatures even further and achieve a comprehensive series of strained relaxed samples with tunable Sn concentrations as high as = 0.21 (and beyond). The latter represent the highest Sn contents in crystalline GeSiSn attained to date and reach the desired = 0.2 range. The synthesized films exhibited significant thickness, allowing a thorough determination of composition, crystallinity, morphology, and bonding properties, indicating the formation of single-phase single-crystal alloys with random cubic structures. Further work will focus on optimizing the latter samples to explore the optical and electronic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c10230DOI Listing

Publication Analysis

Top Keywords

band gap
20
direct band
12
high content
8
critical concentration
8
levels strain
8
concentrations high
8
films grew
8
band
5
gap
5
high
5

Similar Publications

The hybrid skin-topological effect (HSTE) has recently been proposed as a mechanism where topological edge states collapse into corner states under the influence of the non-Hermitian skin effect (NHSE). However, directly observing this effect is challenging due to the complex frequencies of eigenmodes. In this study, we experimentally observe HSTE corner states using synthetic complex frequency excitations in a transmission line network.

View Article and Find Full Text PDF

The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.

View Article and Find Full Text PDF

A Three-Dimensional, Flexible Conductive Network Based on an MXene/Rubber Composite for Lithium Metal Anodes.

ACS Appl Mater Interfaces

December 2024

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China.

Flexibility enhancement is a pressing issue in the current development of advanced lithium-metal battery applications. Many types of organic polymers are inherently flexible, which can form a composite structure enhancing electrode flexibility. However, organic polymers have a negative influence on the plating and stripping of lithium-metal anodes, and the large number of polymers block the pore of the material, reducing the utilization of the active site.

View Article and Find Full Text PDF

The New Paradigm of Ligand Substitution-Driven Enhancement of Anisotropy from SO Units in Short-Wavelength Region.

ACS Cent Sci

December 2024

Research Center for Crystal Materials, State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Key Laboratory of Functional Crystal Materials, Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.

For non-π-conjugated [SO] units, it is challenging to generate sufficient birefringence, owing to the high symmetry of the regular tetrahedron. Unlike the traditional trial-and-error approach, we propose a new paradigm for birefringence engineering to tune the optical properties based on [SO] units. Through the strategy of ligand substitution, we can predict its effect on the band gap and anisotropy.

View Article and Find Full Text PDF

Anion modulation enhances the internal electric field of CuCoO to improve the catalysis in ammonia borane hydrolysis.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:

Ammonia borane (NHBH, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCoO, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!