Long noncoding RNA TRABA suppresses β-glucosidase-encoding BGLU24 to promote salt tolerance in cotton.

Plant Physiol

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China.

Published: January 2024

Salt stress severely damages the growth and yield of crops. Recently, long noncoding RNAs (lncRNAs) were demonstrated to regulate various biological processes and responses to environmental stresses. However, the regulatory mechanisms of lncRNAs in cotton (Gossypium hirsutum) response to salt stress are still poorly understood. Here, we observed that a lncRNA, trans acting of BGLU24 by lncRNA (TRABA), was highly expressed while GhBGLU24-A was weakly expressed in a salt-tolerant cotton accession (DM37) compared to a salt-sensitive accession (TM-1). Using TRABA as an effector and proGhBGLU24-A-driven GUS as a reporter, we showed that TRABA suppressed GhBGLU24-A promoter activity in double transgenic Arabidopsis (Arabidopsis thaliana), which explained why GhBGLU24-A was weakly expressed in the salt-tolerant accession compared to the salt-sensitive accession. GhBGLU24-A encodes an endoplasmic reticulum (ER)-localized β-glucosidase that responds to salt stress. Further investigation revealed that GhBGLU24-A interacted with RING-type E3 ubiquitin ligase (GhRUBL). Virus-induced gene silencing (VIGS) and transgenic Arabidopsis studies revealed that both GhBGLU24-A and GhRUBL diminish plant tolerance to salt stress and ER stress. Based on its substantial effect on ER-related degradation (ERAD)-associated gene expression, GhBGLU24-A mediates ER stress likely through the ERAD pathway. These findings provide insights into the regulatory role of the lncRNA TRABA in modulating salt and ER stresses in cotton and have potential implications for developing more resilient crops.

Download full-text PDF

Source
http://dx.doi.org/10.1093/plphys/kiad530DOI Listing

Publication Analysis

Top Keywords

salt stress
16
long noncoding
8
lncrna traba
8
ghbglu24-a weakly
8
weakly expressed
8
expressed salt-tolerant
8
compared salt-sensitive
8
salt-sensitive accession
8
transgenic arabidopsis
8
revealed ghbglu24-a
8

Similar Publications

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

Early language is shaped by parent-child interactions and has been examined in relation to maternal psychopathology and parenting stress. Minimal work has examined the relation between maternal emotion dysregulation and toddler vocabulary development. This longitudinal study examined associations between maternal emotion dysregulation prenatally, maternal everyday stress at 7 months postpartum, and toddler vocabulary at 18 months.

View Article and Find Full Text PDF

Roots absorb water and nutrients from the soil, support the plant's aboveground organs, and detect environmental changes, making them crucial targets for improving crop productivity. Roots are particularly sensitive to soil salinity, a major abiotic stress that poses a serious threat to global agriculture. In response to salt stress, plants suppress root meristem size, thus reducing root growth; however, the mechanisms underlying this growth restriction remain unclear.

View Article and Find Full Text PDF

LbHKT1;1 Negatively Regulates Salt Tolerance of Limonium bicolor by Decreasing Salt Secretion Rate of Salt Glands.

Plant Cell Environ

January 2025

Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China.

The HKT-type proteins have been extensively studied and have been shown to play important roles in long-distance Na transport, maintaining ion homoeostasis and improving salt tolerance in plants. However, there have been no reports on the types, characteristics and functions of HKT-type proteins in Limonium bicolor, a recretohalophyte species with the typical salt gland structure. In this study, five LbHKT genes were identified in L.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!