The control of toxoplasmosis, a rampant one health disease, has been focussed on conventional antitoxoplasmic agents with their adverse outcomes, including serious side effects, treatment failure and emergence of drug resistant strains. Nanobiotechnology may provide a strong impetus for versatile alternative therapies against toxoplasmosis. Bionanofactory Ochrobactrum sp. strain CNE2 was recruited for the biosynthesis of functionalized magnetite iron nanoparticles (MNPs) and nanozerovalent iron (nZVI) under aerobic and anaerobic conditions and their therapeutic efficacy was evaluated against acute toxoplasmosis in murine model. The formation of self-functionalized spherical nanoparticles varied in size, identity and surface properties were substantiated. Mice were orally administered 20 mg/kg of each formulation on the initial day of infection and continued for seven consecutive days post infection (PI). Parasitological, ultrastructural, immunological, and biochemical studies were performed for assessment of therapeutic activity of biogenic iron nanoparticles (INPs). Parasitologically, MNPs showed the highest antitoxoplasmic efficacy in terms of 96.82% and 91.87% reduction in mean tachyzoite count in peritoneal fluid and liver impression smears, respectively. Lesser percentage reductions were recorded in nZVI-treated infected subgroup (75.44% and 69.04%). In addition, scanning electron microscopy (SEM) examination revealed remarkable reduction in size and extensive damage to the surface of MNPs-treated tachyzoites. MNPs-treated infected mice revealed a statistically significant increase in the serum levels of both interferon gamma (IFN-γ) to 346.2 ± 4.6 pg/ml and reduced glutathione (GSH) to 8.83 ± 0.30 mg/dl that subsequently exerted malondialdehyde (MDA) quenching action. MNPs showed a superior promising antitoxoplasmic activity with respect to both spiramycin (SPI) and nZVI. To best of our knowledge, this is the first study of a bio-safe oral iron nanotherapeutic agent fabricated via an eco-friendly approach that offers promising potential against acute experimental toxoplasmosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558077 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0011655 | DOI Listing |
J Mater Chem B
January 2025
School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
Magnetic chromatography was exploited to fractionate suspensions of magnetoliposomes (SML: lumen-free lipid-encapsulated clusters of multiple magnetic iron-oxide nanoparticles) improving their colloidal properties and relaxivity (magnetic resonance image contrast capability). Fractionation (i) removed sub-populations that do not contribute to the MRI response, and thus (ii) enabled evaluation of the size-dependence of relaxivity for the MRI-active part, which was surprisingly weak in the 55-90 nm range. MC was therefore implemented for processing multiple PEGylated SML types having average sizes ranging from 85 to 105 nm, which were then shown to have strongly size-dependent uptake in an pancreatic cancer model.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Research Centre for Energy, Environment and Technology (CIEMAT), Avda. Complutense, 40, 28040, Madrid, Spain.
As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany, Lahore College for Women University, Lahore, Pakistan.
The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. Electronic address:
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder globally, with no effective treatment available yet. A crucial pathological hallmark of AD is the accumulation of hyperphosphorylated tau protein, which is deteriorated by reactive oxygen species (ROS) and neuroinflammation in AD progression. Thus, alleviation of ROS and inflammation has become a potential therapeutic strategy in many studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!