Predicting the interaction modes and binding affinities of virtual compound libraries is of great interest in drug development. It reduces the cost and time of lead compound identification and selection. Here we apply path-based metadynamics simulations to characterize the binding of potential inhibitors to the aspartic protease plasmepsin V (plm V), a validated antimalarial drug target that has a highly mobile binding site. The potential plm V binders were identified in a high-throughput virtual screening (HTVS) campaign and were experimentally verified in a fluorescence resonance energy transfer (FRET) assay. Our simulations allowed us to estimate compound binding energies and revealed relevant states along binding/unbinding pathways in atomistic resolution. We believe that the method described allows the prioritization of compounds for synthesis and enables rational structure-based drug design for targets that undergo considerable conformational changes upon inhibitor binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c00826 | DOI Listing |
Inflammation
December 2024
Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China.
The main pathogenic mechanism of HIV-associated neurocognitive disorders (HAND) is neuronal apoptosis induced by inflammatory mediators, in which microglial inflammation plays a crucial role. However, the exact pathogenic mechanism remains unclear. Previous studies have shown that the HIV-1 gp120 V3 loop can trigger inflammation in CHME-5 microglia.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, India.
Glimepiride (GLM) is one of the potential antidiabetic drugs used in clinics for a long time. It is currently used in combination with metformin along with other drugs, but has shown various complications in patients from long-term use. Thus, the hypothesis is to use a lower dose of GLM with a non-toxic class of flavonoid, naringin (NARN), for better therapy with minimal side-effects.
View Article and Find Full Text PDFMalays J Pathol
December 2024
National Institutes of Health, Institute for Medical Research, Cancer Research Centre, Haematology Unit, 40170 Shah Alam, Selangor, Malaysia.
Introduction: The emergence of mutations in the BCR::ABL1 kinase domain (KD) impairs imatinib mesylate (IM) binding capacity, thus contributing to IM resistance. Identification of these mutations is important for treatment decisions and precision medicine in chronic myeloid leukaemia (CML) patients. Our study aims to determine the frequency of BCR::ABL1 KD mutations in CML patients with IM resistance.
View Article and Find Full Text PDFIran J Immunol
December 2024
Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Developing effective targeted treatment approaches to overcome drug resistance remains a crucial goal in cancer research. Immunotoxins have dual functionality in cancer detection and targeted therapy.
Objective: This study aimed to engineer a recombinant chimeric fusion protein by combining a nanobody-targeting domain with an exotoxin effector domain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!