Isoniazid (INH) and pyrazinamide (PZA) are both the first-line anti-tuberculosis drugs in clinical treatment. It is notable that there are serious side effects of the drugs along with upregulation of reactive nitrogen species, mainly including peripheral neuritis, gastrointestinal reactions, and acute drug-induced liver injury (DILI). Among them, DILI is the most common clinical symptom as well as the basic reason of treatment interruption, protocol change, and drug resistance. As vital reactive nitrogen species (RNS), peroxynitrite (ONOO) has been demonstrated as a biomarker for evaluation and pre-diagnosis of drug-induced liver injury (DILI). In this work, we developed a red-emitting D-π-A type fluorescence probe DIC-NP which was based on 4'-hydroxy-4-biphenylcarbonitrile modified with dicyanoisophorone as a fluorescent reporter and diphenyl phosphinic chloride group as the reaction site for highly selective and sensitive sensing ONOO. Probe DIC-NP displayed a low detection limit (14.9 nM) and 60-fold fluorescent enhancement at 669 nm in the sensing of ONOO. Probe DIC-NP was successfully applied to monitor exogenous and endogenous ONOO in living HeLa cells and zebrafish. Furthermore, we verified the toxicity of isoniazid (INH) and pyrazinamide (PZA) by taking the oxidative stress induced by APAP as a reference, and successfully imaged anti-tuberculosis drug-induced endogenous ONOO in HepG2 cells. More importantly, we developed a series of mice models of liver injury and investigated the hepatotoxicity caused by the treatment of anti-tuberculosis drugs. At the same time, H&E of mice organs (heart, liver, spleen, lung, kidney) further confirmed the competence of probe DIC-NP for estimating the degree of drug-induced liver injury, which laid a solid foundation for medical research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-023-04985-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!