Microbes are usually present as a specific microbiota, and their classification remains a challenge. MALDI-TOF MS is particularly successful in library-based microbial identification at the species level as it analyzes the molecular weight of peptides and ribosomal proteins. FT-IR allows more accurate classification of bacteria at the subspecies level due to the high sensitivity, specificity and repeatability of FT-IR signals from bacteria, which is not achievable with MALDI-TOF MS. Previous studies have shown that more accurate identification results can be obtained by the fusion of FT-IR and MALDI-TOF MS spectral data. Here, we constructed 20 groups of model microbiota samples and used FT-IR, MALDI-TOF MS, and their fusion data to classify them. Hierarchical clustering analysis (HCA) showed that the classification accuracy of FT-IR, MALDI-TOF MS, and the fusion data was 85%, 90%, and 100%, respectively. These results indicate that both FT-IR and MALDI-TOF MS can effectively classify specific microbiota, and the fusion of their spectral data could improve the classification accuracy. The FT-IR and MALDI-TOF MS data fusion strategy may be a promising technology for specific microbiota classification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3an01108a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!