Many free-swimming bacteria propel themselves through liquid using rotary flagella, and mounting evidence suggests that the inhibition of flagellar rotation initiates biofilm formation, a sessile lifestyle that is a nearly universal surface colonization paradigm in bacteria. In general, motility and biofilm formation are inversely regulated by the intracellular second messenger bis-(3´-5´)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we identify a protein, PlzD, bearing a conserved c-di-GMP binding PilZ domain that localizes to the flagellar pole in a c-di-GMP-dependent manner and alters the foraging behavior, biofilm, and virulence characteristics of the opportunistic human pathogen, . Our data suggest that PlzD interacts with components of the flagellar stator to decrease bacterial swimming speed and changes in swimming direction, and these activities are enhanced when cellular c-di-GMP levels are elevated. These results reveal a physical link between a second messenger (c-di-GMP) and an effector (PlzD) that promotes transition from a motile to a sessile state in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653909 | PMC |
http://dx.doi.org/10.1128/mbio.01536-23 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
School of Biological Sciences, Life Sciences Department, University of Bristol, Bristol BS8 1TQ, England.
Electric fields in terrestrial environments are used by caterpillars to detect their predators, as foraging cues by pollinators, and facilitate ballooning by spiders. This study shows that electric fields facilitate transportation and detection of hummingbirds in a guild of tropical phoretic mites. Hummingbird flower mites feed on nectar and pollen and complete their life cycle inside flowers.
View Article and Find Full Text PDFElife
January 2025
Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Haifa, Israel.
Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts () in response to insect movements over Israel's Hula Valley.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.
The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra ACT2601, Australia.
Visually navigating Myrmecia foragers approach their nest from distances up to 25 m along well-directed paths, even from locations they have never been before ( Narendra et al., 2013). However, close to the nest, they often spend some time pinpointing the nest entrance, sometimes missing it by centimetres.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Environmental Defense Fund, Seattle, Washington, USA.
For similar species to co-occur in places where resources are limited, they need to adopt strategies that partition resources to reduce competition. Our understanding of the mechanisms behind resource partitioning among sympatric marine predators is evolving, but we lack a clear understanding of how environmental change is impacting these dynamics. We investigated spatial and trophic resource partitioning among three sympatric seabirds with contrasting biological characteristics: greater crested terns Thalasseus bergii (efficient flyer, limited diver, and preference for high quality forage fish), little penguins Eudyptula minor (flightless, efficient diver, and preference for high quality forage fish) and silver gulls Chroicocephalus novaehollandiae (efficient flyer, limited diver and generalist diet).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!