Development of a CFD model indicating the quantitative relationship among reactor dimension, bed flow unevenness, and performance for VOCs biofilters.

J Air Waste Manag Assoc

Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, P.R. China.

Published: November 2023

This study presents a Computational Fluid Dynamics (CFD) based biofiltration model to investigate the airflow distribution and the impact of bed flow unevenness (BFU) on the removal of Volatile Organic Compounds (VOCs) in biofilters. The biofiltration model consists of a gas flow sub-model and a VOCs removal sub-model, which were validated by pilot-scale experiments. The model was used to examine the quantitative relationship among reactor dimensions, including the width to height ratio of the filter bed and empty bed residence time (EBRT), BFU, and performance for VOCs biofilters. Simulation results demonstrate that the flow unevenness index (FUI) of the packing layer changes from 0.06 to 0.48 m‧s with reactor dimension changes. With an increase in the width to height ratio at a constant EBRT, FUI increases, BFU changes, and flow velocity fluctuation on the cross-section becomes larger, leading to a reduction of about 10% in VOCs removal efficiency. Concentration distribution of VOCs becomes uneven in the horizontal direction. At a constant width to height ratio of the filter bed, an increase in EBRT causes an increase in FUI, leading to a decrease in VOCs removal efficiency. When the width to height ratio is 0.5, velocity fluctuation of filter bed cross-section is small, the concentration of VOCs decreases evenly across the filter bed layer, and FUI is at a low level (0.06-0.11 m‧s).: In this manuscript, a biofiltration model of VOCs biofilter based on CFD has constructed and validated. And the manuscript gave the quantitative relationship among reactor dimension, bed flow unevenness and performance for VOCs biofilters for the first time. This study can lead to enhanced VOCs removal efficiency and improved overall performance of biofilters in practical engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2023.2267010DOI Listing

Publication Analysis

Top Keywords

flow unevenness
16
vocs biofilters
16
vocs removal
16
width height
16
height ratio
16
filter bed
16
quantitative relationship
12
relationship reactor
12
reactor dimension
12
bed flow
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!