Autoantibodies to chromatin and dsDNA are a hallmark of systemic lupus erythematosus (SLE). In a mouse model of monogenic human SLE caused by DNASE1L3 deficiency, the anti-DNA response is dependent on endosomal nucleic acid-sensing TLRs TLR7 and TLR9. In this study, we report that this response also required TLR2, a surface receptor for microbial products that is primarily expressed on myeloid cells. Cell transfers into lymphopenic DNASE1L3-deficient mice showed that TLR2 was required for anti-DNA Ab production by lymphocytes. TLR2 was detectably expressed on B cells and facilitated the production of IL-6 by B cells activated in the presence of microbial products. Accordingly, treatment with broad-spectrum antibiotics or Ab-mediated blockade of IL-6 delayed the anti-DNA response in DNASE1L3-deficient mice. These studies reveal an unexpected B cell-intrinsic role of TLR2 in systemic autoreactivity to DNA, and they suggest that microbial products may synergize with self-DNA in the activation of autoreactive B cells in SLE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841863PMC
http://dx.doi.org/10.4049/jimmunol.2300313DOI Listing

Publication Analysis

Top Keywords

microbial products
12
autoreactivity dna
8
anti-dna response
8
dnase1l3-deficient mice
8
tlr2
5
cells
5
cutting edge
4
edge tlr2
4
tlr2 signaling
4
signaling cells
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!