Background: Transcobalamin II (TCN2) defect is a rare metabolic disorder associated with a range of neurological manifestations, including mild developmental delay, severe intellectual disability, ataxia, and, in some cases, seizures. Cobalamin, an essential nutrient, plays a crucial role in central nervous system myelination.
Clinical Presentation: We present a family with an index patient who exhibited progressive neurodevelopmental regression starting at 9 months of age, accompanied by myoclonic seizures, ataxia, and tremor. No significant hematological abnormalities were observed. Exome sequencing analysis identified a novel homozygous mutation, c.3G>A - P(Met1I), affecting the acceptor site of intron 4 of the TCN2 gene (chromosome 22: 31003321, NM_000355.4), leading to likely pathogenic variant potentially affecting translation. Following treatment with hydroxocobalamin, the patient demonstrated partial clinical improvement. He has a sibling with overt hematological abnormalities and subtle neurological abnormalities who is homozygous to the same mutation. Both parents are heterozygous for the same mutation.
Conclusions: In infants presenting with unexplained non-specific neurological symptoms, irrespective of classical signs of vitamin B12 deficiency, evaluation for TCN2 defect should be considered. Early diagnosis and appropriate management can lead to favorable outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767415 | PMC |
http://dx.doi.org/10.1002/mgg3.2282 | DOI Listing |
PLoS Genet
January 2025
Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia.
Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.
View Article and Find Full Text PDFPathol Int
January 2025
Department of Cancer Pathology, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan.
Recent studies suggest that lung adenocarcinoma cells are closely associated with the tumorigenesis of large-cell neuroendocrine carcinoma via cellular transformation. However, morphological evidence, along with genetic abnormalities before, during, and after transformation, is quite limited. We present here a case of combined large-cell neuroendocrine carcinoma and adenocarcinoma exhibiting acinar and solid patterns.
View Article and Find Full Text PDFD e h ydro d olichyl d iphosphate s ynthase (DHDDS) is an essential enzyme required for several forms of protein glycosylation in all eukaryotic cells. Surprisingly, three mutant alleles, ( (K42E/K42E), (T206A/K42E), and found in only one patient, (R98W/K42E) have been reported that cause non-syndromic retinitis pigmentosa (RP59), an inherited retinal degeneration (IRD). Because T206A was only observed heterozygously with the K42E allele in RP59 patients, we used CRISPR/CAS9 technology to generate T206A/T206A, and subsequently T206A/K42E alleles in mice to assess the contribution of the T206A allele to the disease phenotype, to model the human disease, and to compare resulting phenotypes to our homozygous K42E mouse model.
View Article and Find Full Text PDFElucidating the genetic contributions to Parkinson's disease (PD) etiology across diverse ancestries is a critical priority for the development of targeted therapies in a global context. We conducted the largest sequencing characterization of potentially disease-causing, protein-altering and splicing mutations in 710 cases and 11,827 controls from genetically predicted African or African admixed ancestries. We explored copy number variants (CNVs) and runs of homozygosity (ROHs) in prioritized early onset and familial cases.
View Article and Find Full Text PDFBone Rep
March 2025
Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
Background: Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant genetic disease characterized by osteosclerosis of the tubular bones and cemento-osseous lesions of the mandibles. () is the pathogenic gene, however, the specific molecular mechanism of GDD remains unclear. Herein, a knockin ( ) mouse model expressing the human mutation p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!