Replacing synthetic fertilizer by organic manure has been shown to reduce emissions of nitrous oxide (N O), but the specific roles of ammonia oxidizing microorganisms and gross nitrogen (N) transformation in regulating N O remain unclear. Here, we examined the effect of completely replacing chemical fertilizer with organic manure on N O emissions, ammonia oxidizers, gross N transformation rates using a 13-year field manipulation experiment. Our results showed that organic manure reduced cumulative N O emissions by 16.3%-210.3% compared to chemical fertilizer. The abundance of ammonia oxidizing bacteria (AOB) was significantly lower in organic manure compared with chemical fertilizer during three growth stages of maize. Organic manure also significantly decreased AOB alpha diversity and changed their community structure. However, organic manure substitution increased the abundance of ammonia oxidizing archaea and the alpha diversity of comammox Nitrospira compared to chemical fertilizer. Interestingly, organic manure decreased organic N mineralization by 23.2%-32.9%, and autotrophic nitrification rate by 10.5%-45.4%, when compared with chemical fertilizer. This study also found a positive correlation between AOB abundance, organic N mineralization and gross autotrophic nitrification rate with N O emission, and their contribution to N O emission was supported by random forest analysis. Our study highlights the key roles of ammonia oxidizers and N transformation rates in predicting cropland N O.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.16957 | DOI Listing |
Sci Total Environ
January 2025
Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:
Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, H-2100 Gödöllő, Hungary.
In recent years, the environmental impacts of plastic production and consumption have become increasingly significant, particularly due to their petroleum-based origins and the substantial waste management challenges they pose. Currently, global plastic waste production has reached 413.8 million metric tons across 192 countries, contributing notably to greenhouse gas emissions.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China.
Conservation tillage and fertilization are widely adopted in agricultural systems to enhance soil fertility and influence fungal communities, thereby improving agroecosystems. However, the effects of no-tillage combined with manure on grain yield, nitrogen use efficiency (NUE), soil fertility, and rhizosphere fungal communities remain poorly understood, particularly in rainfed wheat fields on the Loess Plateau. A 15-year field experiment was conducted at the Niujiawa Experimental Farm of the Cotton Research Institute, Shanxi Agricultural University.
View Article and Find Full Text PDFBioresour Technol
January 2025
Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China. Electronic address:
Composting organic waste is a sustainable recycling method in agricultural systems, yet the microbial preferences for different substrates and their influence on composting efficiency remain underexplored. Here, 210 datasets of published 16S ribosomal DNA amplicon sequences from straw and manure composts worldwide were analyzed, and a database of 278 bacterial isolates was compiled. Substrate-driven microbiome variations were most prominent during the initial composting stages.
View Article and Find Full Text PDFHeliyon
December 2024
Microelement Research Center of Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei Province, 430070, China.
Chinese milk vetch (CMV) is widely recognized as the leading leguminous green manure utilized in the rice-green manure rotation system throughout southern China. While bacteria that form symbiotic relationships with CMV are responsible for fixing a significant portion of nitrogen (N) within agroecosystems. diazotrophic organisms play an essential role in the N cycle and enhance the pool of N readily accessible to plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!