Empirical measurements of solution vapor pressure of ternary acetonitrile (MeCN) HO-NaCl-MeCN mixtures were recorded, with NaCl concentrations ranging from zero to the saturation limit, and MeCN concentrations ranging from zero to an absolute mole fraction of 0.64. After accounting for speciation, the variability of the Henry's law coefficient at vapor-liquid equilibrium (VLE) of MeCN ternary mixtures decreased from 107% to 5.1%. Solute speciation was modeled using a mass action solution model that incorporates solute solvation and ion-pairing phenomena. Two empirically determined equilibrium constants corresponding to solute dissociation and ion pairing were utilized for each solute. When speciation effects were considered, the solid-liquid equilibrium of HO-NaCl-MeCN mixtures appear to be governed by a simple saturation equilibrium constant that is consistent with the binary HO-NaCl saturation coefficient. Further, our results indicate that the precipitation of NaCl in the MeCN ternary mixtures was not governed by changes in the dielectric constant. Our model indicates that the compositions of the salt-induced liquid-liquid equilibrium (LLE) boundary of the HO-NaCl-MeCN mixture correspond to the binary plateau activity of MeCN, a range of concentrations over which the activity remains largely invariant in the binary water-MeCN system. Broader comparisons with other ternary miscible organic solvent (MOS) mixtures suggest that salt-induced liquid-liquid equilibrium exists if: (1) the solution displays a positive deviation from the ideal limits governed by Raoult's law; and (2) the minimum of the mixing free energy profile for the binary water-MOS system is organic-rich. This work is one of the first applications of speciation-based solution models to a ternary system, and the first that includes an organic solute.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cp02003g | DOI Listing |
Int Marit Health
January 2025
National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, Poland.
Medical hyperbaric sessions for Hyperbaric Oxygen Therapy, conducted at 2.4-2.5 ATA for 80 to 120 minutes, expose staff to increased risk of DCS due to the inhalation of compressed air, which increases gas solubility in body fluids as per Henry's Law.
View Article and Find Full Text PDFLangmuir
December 2024
California Institute of Technology, Pasadena, California 91125, United States.
Environ Sci Technol
December 2024
State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Carbonyl compounds are important precursors of aqueous aerosols in the atmosphere, while their gas-particle partitioning behaviors and roles in particulate sulfur formation are poorly understood. In this study, we investigate the partitioning of five carbonyl compounds (formaldehyde, acetaldehyde, acetone, glyoxal, and methylglyoxal) during haze episodes in Beijing, China. On haze days, the values of field-derived effective Henry's law coefficients () on aerosols for these carbonyl compounds are 10-10 M atm, which are significantly higher (10-10 times) than those in pure water.
View Article and Find Full Text PDFDiabetologia
January 2025
Faculty of Health and Medical Science, University of Surrey, Guildford, UK.
J Chem Phys
October 2024
Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
Chemical reactions and vapor-liquid equilibria for molten lithium hydroxide (LiOH) were studied using molecular dynamics simulations and a deep potential (DP) model. The neural network for the model was trained on quantum density functional theory data for a range of conditions. The DP model allows simulations over timescales of hundreds of ns, which provide equilibrium compositions for the systems of interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!