Anion exchange membrane fuel cells (AEMFCs) that operate at high pH, offer the advantage of enabling the use of abundant 3d-transition metal-based electrocatalysts. While they have shown remarkable improvement in performance, their long-term durability remains insufficient for practical applications with the alkaline polymer electrolytes (APEs) being the limiting factor. The stability of APEs is generally evaluated in concentrated alkaline solutions, which overlooks/oversimplifies the complex electrochemical environment of the catalyst layer in membrane electrode assembly (MEA) devices. Herein, we report a study of the degradation of the membrane and ionomer independently under realistic H-air (CO free) fuel cell operation, using proton nuclear magnetic resonance (H-NMR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). While the membrane degradation was minimal after the AEMFC stability test, the ionomer in the catalyst layers degraded approximately 20% to 30% with the cathode being more severely affected than the anode. The ionomer degradation decreased the catalyst utilization and significantly increased the ionic resistance, leading to significant performance degradation in the AEMFC stability test. These findings emphasize the importance of ionomer stability and the need to consider the electrochemical environments of MEAs when evaluating the stability of APEs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548514PMC
http://dx.doi.org/10.1039/d3sc03649aDOI Listing

Publication Analysis

Top Keywords

ionomer degradation
8
catalyst layers
8
anion exchange
8
exchange membrane
8
membrane fuel
8
fuel cells
8
stability apes
8
aemfc stability
8
stability test
8
ionomer
5

Similar Publications

Fe-N-C catalysts are considered promising substitutes for Pt-based catalysts at the cathode in direct methanol fuel cells (DMFCs) owing to their great methanol tolerance. However, Fe-N-C-based DMFCs commonly suffer from a decreased performance under extremely high methanol concentrations and exhibit poor stability, while the underlying mechanism remains controversial. In this study, a self-degradation phenomenon in a passive Fe-N-C-based DMFC was investigated in detail.

View Article and Find Full Text PDF

Structural Transformation and Degradation of Cu Oxide Nanocatalysts during Electrochemical CO Reduction.

J Am Chem Soc

January 2025

Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.

The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.

View Article and Find Full Text PDF

Innovative strategies for designing and constructing efficient fuel cell electrocatalysts.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

Polymer electrolyte membrane fuel cells (PEMFCs) are one of the most promising energy conversion devices due to their high efficiency and zero emission; however, two major challenges, high cost and short lifetime, have been hindering the commercialization of fuel cells. Achieving low-Pt or non-precious metal oxygen reduction reaction (ORR) electrocatalysts is one of the main research ideas in this field. In this review, the degradation mechanism of Pt-based catalysts is firstly explained and elucidated, and then five strategies are suggested for the reduction of Pt usage without loss of activity and durability: modulation of metal-support interactions, optimization of local ionomers and mass transport, modulation of composition, modulation of structure, and multi-site synergistic effects.

View Article and Find Full Text PDF

Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.

View Article and Find Full Text PDF

Unlabelled: This review aimed to evaluate and compare the biological response (biocompatibility and cytotoxicity) of resin modified glass ionomer cement (RMGIC) in contrast to conventional glass ionomer cement (GIC) on human cells. Articles reporting parallel and split-mouth clinical trials, randomized controlled trials, non-randomized controlled trials, prospective studies, and studies on human permanent teeth that assessed the biological response of GIC and RMGIC were included. The following electronic bibliographic databases were searched using the keywords: MEDLINE/PubMed, EBSCO, Cochrane Central Register of Controlled Trials, and Google Scholar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!