Charge-Dependent Metastable Dissociations of Multiply Charged Decafluorobiphenyl Formed by Femtosecond Laser Pulses.

Mass Spectrom (Tokyo)

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Published: October 2023

Femtosecond laser ionization is a unique means to produce multiply charged organic molecules in the gas phase. The charge-dependent chemical reactions of such electron-deficient molecules are interesting from both fundamental and applied scientific perspectives. We have reported the production of quadruply charged perfluoroaromatics; however, they were so stable that we cannot obtain information about their chemical reactions. In general, it might be difficult to realize the conflicting objectives of observing multiply charged molecular ion themselves and their metastable dissociations. In this study, we report the first example showing metastable dissociations of several charge states within the measurable time range of a time-of-flight mass spectrometer. Metastable dissociations were analyzed by selecting a precursor ion with a Bradbury-Nielsen ion gate followed by time-of-flight analysis using a reflectron. We obtained qualitative information that triply and quadruply charged decafluorobiphenyl survived at least in the acceleration region but completely decomposed before entering a reflectron. In contrast, three dissociation channels for singly and one for doubly charged molecular ions were discriminated by a reflectron and determined with the help of ion trajectory simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548501PMC
http://dx.doi.org/10.5702/massspectrometry.A0130DOI Listing

Publication Analysis

Top Keywords

metastable dissociations
16
multiply charged
12
charged decafluorobiphenyl
8
femtosecond laser
8
chemical reactions
8
quadruply charged
8
charged molecular
8
charged
6
charge-dependent metastable
4
dissociations
4

Similar Publications

Emerging contaminants (ECs) pose great challenges to water treatment technology due to their complexity and high harm. In this paper, the method of dielectric barrier discharge (DBD) plasma coupled with iron-based catalyst (FeNC) activating periodate (PI) was first designed for ECs removal. The ingenious introduction of FeNC not only promotes the Fenton-like reaction of DBD system but also reduces the PI activation energy barrier and accelerates the electron shuttle between PI and pollutants.

View Article and Find Full Text PDF

Prediction of Cyclic O Molecules Stabilized by Helium under Pressure.

Adv Sci (Weinh)

January 2025

Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China.

Oxygen usually exists in the form of diatomic molecules at ambient conditions. At high pressure, it undergoes a series of phase transitions from diatomic O to O cluster and ultimately dissociates into a polymeric O spiral chain structure. Intriguingly, the commonly found cyclic hexameric molecules in other group VIA elements (e.

View Article and Find Full Text PDF

Ethylene glycol dinitrate (EGDN) is a nitrate ester explosive widely used in military ordnance and missile systems. This study investigates the decomposition dynamics of the EGDN cation using a comprehensive approach that combines femtosecond time-resolved mass spectrometry (FTRMS) experiments with electronic structure and molecular dynamics computations. We identify three distinct dissociation time scales for the metastable EGDN cation of approximately 40-60 fs, 340-450 fs, and >2 ps.

View Article and Find Full Text PDF

Metastable fcc-Ru/fcc-RuO Heterointerphase for Hydrogen Evolution.

Inorg Chem

January 2025

School of Materials and Physics and Center of Mineral Resource Waste Recycling, Jiangsu Key Laboratory for Clean Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China.

The metastable crystal structure is difficult to synthesize and maintain but normally acts as special active sites with improved functional properties. Herein, a moderate crystallographic transformation strategy is used to effectively synthesize metastable RuO. By controlling the degree of oxidation, we constructed different heterophase Ru/RuO catalysts.

View Article and Find Full Text PDF

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!