Thrombogenesis, a major cause of implantable cardiovascular device failure, can be addressed through the use of biodegradable polymers modified with anticoagulating moieties. This study introduces a novel polyester urethane urea (PEUU) functionalized with various anti-platelet deposition molecules for enhanced antiplatelet performance in regenerative cardiovascular devices. PEUU, synthesized from poly-caprolactone, 1,4-diisocyanatobutane, and putrescine, was chemically oxidized to introduce carboxyl groups, creating PEUU-COOH. This polymer was functionalized with polyethyleneimine, 4-arm polyethylene glycol, seleno-L-cystine, heparin sodium, and fondaparinux. Functionalization was confirmed using Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Bio-compatibility and hemocompatibility were validated through metabolic activity and hemolysis assays. The anti-thrombotic activity was assessed using platelet aggregation, lactate dehydrogenase activation assays, and scanning electron microscopy surface imaging. The whole-blood clotting time quantification assay was employed to evaluate anticoagulation properties. Results demonstrated high biocompatibility and hemocompatibility, with the most potent anti-thrombotic activity observed on pegylated surfaces. However, seleno-L-cystine and fondaparinux exhibited no anti-platelet activity. The findings highlight the importance of balancing various factors and addressing challenges associated with different approaches when developing innovative surface modifications for cardiovascular devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548217PMC
http://dx.doi.org/10.3389/fbioe.2023.1257778DOI Listing

Publication Analysis

Top Keywords

cardiovascular devices
12
polyester urethane
8
urethane urea
8
urea peuu
8
regenerative cardiovascular
8
innovative surface
8
surface modifications
8
anti-thrombotic activity
8
peuu functionalization
4
functionalization enhanced
4

Similar Publications

People with symptomatic lower extremity peripheral artery disease (PAD) suffer from severe leg pain, walking impairment, and reduced quality of life, but few effective treatments are available. Emerging evidence suggests that regular heat therapy (HT) may improve cardiovascular and physical function in patients with PAD. However, the lack of accessible, practical modalities for unsupervised HT, especially for elderly individuals, has hindered clinical implementation.

View Article and Find Full Text PDF

Background: Climate change is increasing the frequency of high heat and high humidity days. Whether these conditions can trigger ventricular arrhythmias [ventricular tachycardia/ventricular fibrillation, VT/VF] in susceptible persons is unknown.

Objectives: The purpose of this study was to determine the relationship between warm-season weather conditions and risk of VT/VF in individuals with pacemakers and defibrillators.

View Article and Find Full Text PDF

Artificial Intelligence-Enabled Novel Atrial Fibrillation Diagnosis System Using 3D Pulse Perception Flexible Pressure Sensor Array.

ACS Sens

January 2025

Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215137, China.

Atrial fibrillation (AF) as one of the most common cardiovascular diseases has attracted great attention due to its high disability and mortality rate. Thus, a timely and effective recognition method for AF is of great importance for diagnosing and preventing it. Herein, we proposed a novel intelligent sensing and recognition system for AF which combined Traditional Chinese Medicine (TCM), flexible wearable electronic devices, and artificial intelligence.

View Article and Find Full Text PDF

Objective: Right ventricular failure is a leading cause of mortality among patients with various etiologies of cardiogenic shock. This case series outlines an innovative approach to directly unloading the right ventricle with the Impella LD or 5.5 without crossing the tricuspid valve in cases requiring tricuspid valve repair or replacement.

View Article and Find Full Text PDF

Background: Selective androgen receptor modulators (SARMs) are small-molecule compounds that exert agonist and antagonist effects on androgen receptors in a tissue-specific fashion. Because of their performance-enhancing implications, SARMs are increasingly abused by athletes. To date, SARMs have no Food and Drug Administration approved use, and recent case reports associate the use of SARMs with deleterious effects such as drug-induced liver injury, myocarditis, and tendon rupture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!