Many small molecule bioactive and marketed drugs are chiral. They are often synthesised from commercially available chiral building blocks. However, chirality is sometimes incorrectly assigned by manufacturers with consequences for the end user ranging from: experimental irreproducibility, wasted time on synthesising the wrong product and reanalysis, to the added cost of purchasing the precursor and resynthesis of the correct stereoisomer. Further on, this could lead to loss of reputation, loss of funding, to safety and ethical concerns due to potential administration of the wrong form of a drug. It is our firm belief that more stringent control of chirality be provided by the supplier and, if needed, requested by the end user, to minimise the potential issues mentioned above. Certification of chirality would bring much needed confidence in chemical structure assignment and could be provided by a variety of techniques, from polarimetry, chiral HPLC, using known chiral standards, vibrational circular dichroism, and x-ray crystallography. A few case studies of our brushes with wrong chirality assignment are shown as well as some examples of what we believe to be good practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10549247PMC
http://dx.doi.org/10.1039/d3cb00082fDOI Listing

Publication Analysis

Top Keywords

chirality
5
chirality key
4
key parameter
4
parameter chemical
4
chemical probes
4
probes small
4
small molecule
4
molecule bioactive
4
bioactive marketed
4
marketed drugs
4

Similar Publications

Chiral alkynyl Au(I) complexes: Enhancing chiroptical amplification of circularly polarized luminescence through supramolecular helices.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China. Electronic address:

The construction of helical structures through self-assembly and the exploration of their formation mechanisms not only amplify chiroptical properties but also provide profound insights into the structures and functions of natural helices. In this study, we developed a chiral Au(I) system based on BINAP and alkynyl ligands. The modification of the length or number of alkyl chains at the terminal positions of the alkynyl ligands significantly impacted the self-assembly behavior of the complexes.

View Article and Find Full Text PDF

Model P-chirogenic phosphonates derived from isopinocampheol, offering an excellent experimental system for studying chirality on the phosphorus chiral center, were studied using a set of chiroptical methods including ECD, VCD and ROA. Thanks to their rigidity, limiting the number of possible conformers, we successfully correlated the experimental UV-vis/ECD, IR/VCD and Raman/ROA results with DFT calculations. This allowed us to confidently assign the absolute configuration of our models, and our assignment is consistent with X-ray diffraction (XRD) data.

View Article and Find Full Text PDF

Chiral vortices and their phase transition in ferroelectric/dielectric heterostructures have drawn significant attention in the field of condensed matter. However, the dynamical origin of the chiral phase transition from achiral to chiral polar vortices has remained elusive. Here, we develop a phase-field perturbation model and discover the softening of out-of-plane vibration mode of polar vortices in [(PbTiO)/(SrTiO)] superlattices at a critical epitaxial strain or temperature.

View Article and Find Full Text PDF

() infections are increasingly challenging due to their propensity to form biofilms and low outer membrane permeability, especially in chronically infected patients with thick mucus. exhibits multiple drug resistance mechanisms, making it one of the most significant global public health threats. In this study, we found that moxifloxacin (MXC) and antibacterial peptides (ε-poly-l-lysine, ε-PLL) exhibited a synergistic effect against multidrug-resistant (MDR-).

View Article and Find Full Text PDF

Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!