Introduction: Seasonal droughts will become more severe and frequent under the context of global climate change, this would result in significant variations in the root distribution and water utilization patterns of plants. However, research on the determining factors of deep fine root and water utilization is limited.
Methods: We measured the fine root biomass and water utilization of trees, shrubs and herbs, and soil properties, light transmission, and community structure parameters in subtropical pine plantations with seasonal droughts.
Results And Discussion: We found that the proportion of deep fine roots (below 1 m depth) is only 0.2-5.1%, but that of deep soil water utilization can reach 20.9-38.6% during the dry season. Trees improve deep soil water capture capacity by enhancing their dominance in occupying deep soil volume, and enhance their deep resource foraging by increasing their branching capacity of absorptive roots. Shrubs and herbs showed different strategies for deep water competition: shrubs tend to exhibit a "conservative" strategy and tend to increase individual competitiveness, while herbs exhibited an "opportunistic" strategy and tend to increase variety and quantity to adapt to competitions.
Conclusion: Our results improve our understanding of different deep fine root distribution and water use strategies between overstory trees and understory vegetations, and emphasize the importance of deep fine root in drought resistance as well as the roles of deep soil water utilization in shaping community assembly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548128 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1275464 | DOI Listing |
J Physiol
January 2025
Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx and oesophagus, which are essential for swallow. Disordered swallow (dysphagia) is a serious problem in elderly humans, increasing the risk of aspiration, a key contributor to mortality. Despite this importance, very little is known about the pathophysiology of ageing dysphagia and the relative importance of frank muscle weakness compared to timing/activation abnormalities.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
The Effective Fragment Potential (EFP) method, a polarizable quantum mechanics-based force field for describing non-covalent interactions, is utilized to calculate protein-ligand interactions in seven inactive cyclin-dependent kinase 2-ligand complexes, employing structural data from molecular dynamics simulations to assess dynamic and solvent effects. Our results reveal high correlations between experimental binding affinities and EFP interaction energies across all the structural data considered. Using representative structures found by clustering analysis and excluding water molecules yields the highest correlation (R2 of 0.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.
Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.
View Article and Find Full Text PDFPlant J
January 2025
Systems Biotechnology Group, Department Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, 04318, Germany.
Biophotovoltaics offers a promising low-carbon footprint approach to utilize solar energy. It aims to couple natural oxygenic photosynthetic electrons to an external electron sink. This lays the foundation for a potentially high light-to-energy efficiency of the Biophotovoltaic process.
View Article and Find Full Text PDFJ Food Sci Technol
February 2025
Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham, 44150 Thailand.
This study aimed to fabricate edible films from tapioca (T) and potato (P) starch, assessing their physicochemical properties and biodegradation across different ratios (T100P0, T70P30, T50P50, and T30P70). The films underwent evaluation for moisture content, thickness, water vapor permeability, and color values. T100P0 and T30P70 formulations exhibited the highest film transparency at 43.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!