Magnetoresistance-based biosensors utilize changes in electrical resistance upon varying magnetic fields to measure biological molecules or events involved with magnetic tags. However, electrical resistance fluctuates with temperature. To decouple unwanted temperature-dependent signals from the signal of interest, various methods have been proposed to correct signals from magnetoresistance-based biosensors. Yet, there is still a need for a temperature correction method capable of instantaneously correcting signals from all sensors in an array, as multiple biomarkers need to be detected simultaneously with a group of sensors in a central laboratory or point-of-care setting. Here we report a giant magnetoresistive biosensor system that enables real-time temperature correction for individual sensors using temperature correction coefficients obtained through a temperature sweep generated by an integrated temperature modulator. The algorithm with individual temperature correction coefficients obviously outperformed that using the average temperature correction coefficient. Further, temperature regulation did not eliminate temperature-dependent signals completely. To demonstrate that the method can be used in biomedical applications where large temperature variations are involved, binding kinetics experiments and melting curve analysis were conducted with the temperature correction method. The method successfully removed all temperature-dependent artifacts and thus produced more precise kinetic parameters and melting temperatures of DNA hybrids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552591 | PMC |
http://dx.doi.org/10.1016/j.biosx.2023.100356 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!