A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diffuse domain approach for flexible needle insertion and relaxation. | LitMetric

Diffuse domain approach for flexible needle insertion and relaxation.

Int J Numer Method Biomed Eng

Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, Mannheim, Germany.

Published: January 2024

Needle insertion simulations play an important role in medical training and surgical planning. Most simulations require boundary conforming meshes, while the diffuse domain approach, currently limited to stiff needles, eliminates the need for meshing geometries. In this article the diffuse domain approach for needle insertion simulations is first extended to the use of flexible needles with bevel needle tips, which are represented by an Euler-Bernoulli beam. The model parameters are tuned and the model is evaluated on a real-world phantom experiment. Second, a new method for the relaxation of the needle-tissue system after the user releases the needle is introduced. The equilibrium state of the system is determined by minimizing the potential energy. The convergence rate of the coupled Laplace equations for solving the Euler-Bernoulli beam is 1.92 0.14 for decreasing cell size. The diffuse penalty method for the application of Dirichlet boundary conditions results in a convergence rate of 0.73 0.21 for decreasing phase field width. The simulated needle deviates on average by 0.29 mm compared to the phantom experiment. The error of the tissue deformation is below 1 mm for 97.5% of the attached markers. Two additional experiments demonstrate the feasibility of the relaxation process. The simulation method presented here is a valuable tool for patient-specific medical simulations using flexible needles without the need for boundary conforming meshing. To the best of the authors' knowledge this is the first work to introduce a relaxation model, which is a major step for simulating accurate needle-tissue positioning during realistic medical interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3782DOI Listing

Publication Analysis

Top Keywords

diffuse domain
12
domain approach
12
needle insertion
12
insertion simulations
8
boundary conforming
8
flexible needles
8
euler-bernoulli beam
8
phantom experiment
8
convergence rate
8
needle
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!