Reducing CO emissions from industrial sectors and motor vehicles is currently receiving much attention. There are different strategies for CO capture, one of which is using calcium oxide (CaO). In our proposed carbon dioxide cycle, limestone is first calcined to get CaO, which is then used to capture CO by converting it to CaCO. Next, the released CO could be converted to different organic matter by different sequestration techniques. For this purpose, CaCO discs have been prepared by compression molding to investigate the effect of sintering temperature on the mechanical and chemical properties of CaO carbonation reaction. The aim of this work is to fill the knowledge gap for the effect of the contact profile between CO gas and CaO disc, particularly the effect of reducing the void fraction of CaO on the rate of carbonation reaction. It was found that the flexural strength of the CaO discs was influenced by several factors, such as the calcination temperature, duration of calcination, and pressing pressure. The carbonation step indicated that both CO and HO are reacting with CaO simultaneously and progressively, with the progressive reaction of HO and CO being a favorable route. The carbonation process happens as a surface reaction-controlled process followed by a slower internal diffusion-controlled process. Additionally, a kinetic study of the competing reactions indicated that two factors are controlling the process: diffusion of gases through the pores and then the reaction rate. Furthermore, our data showed that the CO uptake rate was 1352.34 mg/g CaO, indicating that 566.34 mg of CO was adsorbed inside the pores of the CaO disc. Based on these results, we propose a new mechanism of the sequence of the competing reactions. In summary, the CaO discs revealed a significant removal of CO from stack gases, which will be suitable for removing CO from exhaust gases generated by industrial processes and other sources of emissions such as vehicles and ships.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30094-7 | DOI Listing |
Updates Surg
January 2025
Department of Gastrointestinal Surgery, The First People's Hospital of Foshan, No. 81 Lingnan Avenue North, Foshan, China.
The surgical risk is higher for obese patients undergoing laparoscopic left hemicolectomy. To enhance the surgical safety and efficacy for obese patients, we have innovatively integrated the advantages of various surgical approaches to modify a pancreas-guided C-shaped surgical procedure. The safety and quality were assessed through a retrospective analysis.
View Article and Find Full Text PDFPediatr Cardiol
January 2025
Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.
Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.
The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.
View Article and Find Full Text PDFChemMedChem
January 2025
Nankai University, State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, 94 Weijin Road, 300071, Tianjin, CHINA.
Membrane proteins, a principal class of drug targets, play indispensable roles in various biological processes and are closely associated with essential life functions. Their study, however, is complicated by their low solubility in aqueous environments and distinctive structural characteristics, necessitating a suitable native-like environment for molecular analysis. Nanodisc technology has revolutionized this field, providing biochemists with a powerful tool to stabilize membrane proteins and significantly enhance their research possibilities.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Background: Preimplantation embryos in vivo are exposed to various growth factors in the female reproductive tract that are absent in in vitro embryo culture media. Cell-free fat extract exerts antioxidant, anti-ageing, and ovarian function-promoting effects. However, its effects on embryo quality are yet to be investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!