Evolutionary radiations generate most of Earth's biodiversity, but are there common ecomorphological traits among the progenitors of radiations? In Synapsida (the mammalian total group), 'small-bodied faunivore' has been hypothesized as the ancestral state of most major radiating clades, but this has not been quantitatively assessed across multiple radiations. To examine macroevolutionary patterns in a phylogenetic context, we generated a time-calibrated metaphylogeny ('metatree') comprising 1,888 synapsid species from the Carboniferous through the Eocene (305-34 Ma) based on 269 published character matrices. We used comparative methods to investigate body size and dietary evolution during successive synapsid radiations. Faunivory is the ancestral dietary regime of each major synapsid radiation, but relatively small body size is only established as the common ancestral state of radiations near the origin of Mammaliaformes in the Late Triassic. The faunivorous ancestors of synapsid radiations typically have numerous novel characters compared with their contemporaries, and these derived traits may have helped them to survive faunal turnover events and subsequently radiate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41559-023-02200-y | DOI Listing |
Anat Rec (Hoboken)
January 2025
Instituto de Plasmas e Fusão Nuclear & Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
Hypercanines, or hypertrophied canines, are observed in a wide range of both extinct and extant synapsids. In non-mammaliaform cynodonts, the Permo-Triassic forerunners of mammals, long canines are not uncommon, appearing in several unrelated taxa within the clade. Among them is Trucidocynodon riograndensis, a carnivorous ecteniniid cynodont from the Late Triassic of Brazil, which exhibits a specialized dentition, including spear-shaped incisors, very long and narrow canines, and sectorial postcanines with distally oriented cusps, all of which have finely serrated margins.
View Article and Find Full Text PDFAnat Rec (Hoboken)
April 2024
European Synchrotron Radiation Facility, Grenoble, France.
Non-mammaliaform synapsids (NMS) represent the closest relatives of today's mammals among the early amniotes. Exploring their brain and nervous system is key to understanding how mammals evolved. Here, using CT and Synchrotron scanning, we document for the first time three extreme cases of neurosensory and behavioral adaptations that probe into the wide range of unexpected NMS paleoneurological diversity.
View Article and Find Full Text PDFPLoS One
April 2024
Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan, Argentina.
Dinosauria debuted on Earth's stage in the aftermath of the Permo-Triassic Mass Extinction Event, and survived two other Triassic extinction intervals to eventually dominate terrestrial ecosystems. More than 231 million years ago, in the Upper Triassic Ischigualasto Formation of west-central Argentina, dinosaurs were just getting warmed up. At this time, dinosaurs represented a minor fraction of ecosystem diversity.
View Article and Find Full Text PDFPeerJ
March 2024
Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom.
The mammalian crown originated during the Mesozoic and subsequently radiated into the substantial array of forms now extant. However, for about 100 million years before the crown's origin, a diverse array of stem mammalian lineages dominated terrestrial ecosystems. Several of these stem lineages overlapped temporally and geographically with the crown mammals during the Mesozoic, but by the end of the Cretaceous crown mammals make up the overwhelming majority of the fossil record.
View Article and Find Full Text PDFNat Ecol Evol
November 2023
Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
Evolutionary radiations generate most of Earth's biodiversity, but are there common ecomorphological traits among the progenitors of radiations? In Synapsida (the mammalian total group), 'small-bodied faunivore' has been hypothesized as the ancestral state of most major radiating clades, but this has not been quantitatively assessed across multiple radiations. To examine macroevolutionary patterns in a phylogenetic context, we generated a time-calibrated metaphylogeny ('metatree') comprising 1,888 synapsid species from the Carboniferous through the Eocene (305-34 Ma) based on 269 published character matrices. We used comparative methods to investigate body size and dietary evolution during successive synapsid radiations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!