A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Can Weight of Evidence, Quantitative Bias, and Bounding Methods Evaluate Robustness of Real-world Evidence for Regulator and Health Technology Assessment Decisions on Medical Interventions? | LitMetric

Can Weight of Evidence, Quantitative Bias, and Bounding Methods Evaluate Robustness of Real-world Evidence for Regulator and Health Technology Assessment Decisions on Medical Interventions?

Clin Ther

Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA; CERobs Consulting, LLC, Wrightsville Beach, North Carolina, USA. Electronic address:

Published: December 2023

Purpose: High-quality evidence is crucial for health care intervention decision-making. These decisions frequently use nonrandomized data, which can be more vulnerable to biases than randomized trials. Accordingly, methods to quantify biases and weigh available evidence could elucidate the robustness of findings, giving regulators more confidence in making approval and reimbursement decisions.

Methods: We conducted an integrative literature review to identify methods for determining probability of causation, evaluating weight of evidence, and conducting quantitative bias analysis as related to health care interventions. Eligible studies were published from 2012 to 2021, applicable to pharmacoepidemiology, and presented a method that met our objective.

Findings: Twenty-two eligible studies were classified into 4 categories: (1) quantitative bias analysis; (2) weight of evidence methods; (3) Bayesian networks; and (4) miscellaneous. All of the methods have strengths, limitations, and situations in which they are more well suited than others. Some methods seem to lend themselves more to applications of health care evidence on medical interventions than others.

Implications: To provide robust evidence for and improve confidence in regulatory or reimbursement decisions, we recommend applying multiple methods to triangulate associations of medical interventions, accounting for biases in different ways. This approach could lead to well-defined robustness assessments of study findings and appropriate science-driven decisions by regulators and payers for public health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinthera.2023.09.010DOI Listing

Publication Analysis

Top Keywords

weight evidence
12
quantitative bias
12
health care
12
bias analysis
8
eligible studies
8
medical interventions
8
methods
7
evidence
7
health
5
evidence quantitative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!