[Eicosanoids and rheumatic disease].

Cas Lek Cesk

Published: October 1986

Download full-text PDF

Source

Publication Analysis

Top Keywords

[eicosanoids rheumatic
4
rheumatic disease]
4
[eicosanoids
1
disease]
1

Similar Publications

Chondroprotective Effect of Extract in Primary Chondrocytes and Rat OA Model.

Int J Mol Sci

December 2024

Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea.

() was extracted using fermented ethanol. The effect of fermented ethanol extract of (FeCH) on chondrocyte viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-iphenyltetrazolium bromide assay, which showed no cytotoxicity at 2 mg/mL. FeCH pretreatment in IL-1β-stimulated chondrocytes significantly inhibited the accumulation of nitric oxide and prostaglandin E, which was analyzed using the ELISA assay.

View Article and Find Full Text PDF

Therapeutic potential of d-limonene in rheumatoid arthritis: Modulation of inflammatory, anti-inflammatory cytokines, and prostaglandin E2.

Arch Pharm (Weinheim)

December 2024

Laboratory of Biotechnology and Natural Resources Valorizationm, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.

Rheumatoid arthritis (RA) is a persistent autoimmune disorder predominantly affecting the joint structures, eliciting inflammatory responses, and ultimately leading to degenerative changes without proper medical intervention. Ultimately, this can severely impair joint function and impact the patient's quality of life. Current treatment approaches include disease-modifying anti-rheumatic drugs, non-steroidal anti-inflammatory drug, corticosteroids, and biologic therapies for RA management.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune-mediated disease with the highest disability rate. Sporidiobolus pararoseus polysaccharides (SPP) have been demonstrated to have anti-rheumatoid and microbiota-modulatory effects; however, the underlying mechanisms remain unclear. This study employed collagen-induced arthritis (CIA) mice to explore the metabolic and genetic pathways.

View Article and Find Full Text PDF

Lipoxin A4 modulates the PKA/CREB and NF-κB signaling pathway to mitigate chondrocyte catabolism and apoptosis in temporomandibular joint osteoarthritis.

Exp Cell Res

October 2024

Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China. Electronic address:

Temporomandibular joint osteoarthritis (TMJ-OA) is characterized by the degradation of the extracellular matrix (ECM) in cartilage and the apoptosis of chondrocytes, which is caused by inflammation and disruptions of chondrocyte metabolism and inflammation. Lipoxin A4 (LXA4), a specialized pro-resolving mediator, has been shown to inhibit inflammation and regulate the balance between ECM synthesis and degradation. However, the therapeutic effects of LXA4 on TMJ-OA and its underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Rheumatic heart disease (RHD) is an autoimmune disease caused by recurrent infections of Group A streptococcus (GAS), ultimately leading to inflammation and the fibrosis of heart valves. Recent studies have highlighted the crucial role of C-C chemokine receptor type 2-positive (CCR2) macrophages in autoimmune diseases and tissue fibrosis. However, the specific involvement of CCR2 macrophages in RHD remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!