Mercury mobilization in shrubland after a prescribed fire in NE Portugal: Insight on soil organic matter composition and different aggregate size.

Sci Total Environ

Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain; Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, Rúa Canella da Costa da Vela 12, 32004 Ourense, Spain.

Published: December 2023

Soils constitute the major reservoir of mercury (Hg) in terrestrial ecosystems, whose stability may be threatened by wildfires. This research attempts to look at the effect of prescribed fire on the presence of Hg in a shrubland ecosystem from NE Portugal, delving into its relationship with soil aggregate size and the molecular composition of soil organic matter (SOM). During the prescribed fire, on average 347 mg Hg ha were lost from the burnt aboveground biomass of shrubs and 263 mg Hg ha from the combustion of the soil organic horizon. Overall, Hg concentration and pools in the mineral soil did not show significant changes due to burning, which highlights their role as long-term Hg reservoirs. The higher Hg concentrations found in smaller aggregates (<0.2 mm) compared to coarser ones (0.5-2 mm) are favored by the higher degree of organic matter decomposition (low C/N ratio), rather than by greater total organic C contents. The Hg-enriched finest fraction of soil (<0.2 mm) could be more prone to be mobilized by erosion, whose potential arrival to water bodies increases the environmental concern for the Hg present in fire-affected soils. The SOM quality (molecular composition) and the main organic families, analyzed by Fourier-transform infrared spectroscopy in combination with multivariate statistical analysis, significantly conditioned the retention/emission of Hg in the uppermost soil layers. Thus, before the fire, Hg was strongly linked to lipid and protein fractions, while Hg appeared to be linked to aromatic-like compounds in fire-affected SOM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.167532DOI Listing

Publication Analysis

Top Keywords

prescribed fire
12
soil organic
12
organic matter
8
aggregate size
8
soil
5
mercury mobilization
4
mobilization shrubland
4
shrubland prescribed
4
fire portugal
4
portugal insight
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!