We previously demonstrated that Aedes aegypti pyruvate kinase (AaPK) plays a key role in the regulation of both carbon and nitrogen metabolism in mosquitoes. To further elucidate whether AaPK can be post-translationally regulated by Ae. aegypti sirtuin 2 (AaSirt2), an NAD-dependent deacetylase that catalyzes the removal of acetyl groups from acetylated lysine residues, we conducted a series of analysis in non-starved and starved female mosquitoes. Transcriptional and protein profiles of AaSirt2, analyzed by qPCR and western blots, indicated that the AaSirt2 is differentially modulated in response to sugar or blood feeding in mosquito tissues dissected at different times during the first gonotrophic cycle. We also found that AaSirt2 is localized in both cytosolic and mitochondrial cellular compartments of fat body and thorax. Multiple lysine-acetylated proteins were detected by western blotting in both cellular compartments. Furthermore, western blotting of immunoprecipitated proteins provided evidence that AaPK is lysine-acetylated and bound with AaSirt2 in the cytosolic fractions of fat body and thorax from non-starved and starved females. In correlation with these results, we also discovered that RNAi-mediated knockdown of AaSirt2 in the fat body of starved females significantly decreased AaPK protein abundance. Notably, survivorship of AaSirt2-deficient females maintained under four different nutritional regimens was not significantly affected. Taken together, our data reveal that AaPK is post-translationally regulated by AaSirt2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698509 | PMC |
http://dx.doi.org/10.1016/j.ibmb.2023.104015 | DOI Listing |
Int J Mol Sci
November 2024
Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland.
Biochem J
December 2024
Purdue University, West Lafayette, Indiana, United States.
The Phosphatases of Regenerating Liver (PRLs) are members of the protein tyrosine phosphatase (PTP) superfamily that play pro-oncogenic roles in cell proliferation, migration, and survival. We previously demonstrated that PRLs can post-translationally downregulate PTEN, a tumor suppressor frequently inactivated in human cancers, by dephosphorylating PTEN at Tyr336, which promotes the NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Here we report that PRLs can also reduce PTEN expression by upregulating MicroRNA-21 (miR-21), which is one of the most frequently overexpressed miRNAs in solid tumors.
View Article and Find Full Text PDFSci Adv
November 2024
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
Front Oncol
October 2024
Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers.
View Article and Find Full Text PDFMol Cancer
October 2024
Graduate School of Biomedical Sciences and Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
Background: Aside from the canonical role of PDL1 as a tumour surface-expressed immune checkpoint molecule, tumour-intrinsic PDL1 signals regulate non-canonical immunopathological pathways mediating treatment resistance whose significance, mechanisms, and therapeutic targeting remain incompletely understood. Recent reports implicate tumour-intrinsic PDL1 signals in the DNA damage response (DDR), including promoting homologous recombination DNA damage repair and mRNA stability of DDR proteins, but many mechanistic details remain undefined.
Methods: We genetically depleted PDL1 from transplantable mouse and human cancer cell lines to understand consequences of tumour-intrinsic PDL1 signals in the DNA damage response.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!