Chromium (Cr) is a hazardous heavy metal that negatively affects animals and plants. The micronutrients selenium (Se) and molybdenum (Mo) have been widely shown to alleviate heavy metal toxicity in plants. However, the molecular mechanism of Cr chelation on the cell wall by combined treatment with Se and Mo has not been reported. Therefore, this study aimed to explore the effects of Se-Mo interactions on the subcellular distribution of Cr (50 µM) and on cell wall composition, structure, functional groups and Cr content, in addition to performing a comprehensive analysis of the transcriptome. Our results showed that the cell walls of shoots and roots accumulated 51.0% and 65.0% of the Cr, respectively. Furthermore, pectin in the cell wall bound 69.5%/90.2% of the Cr in the shoots/roots. Se-Mo interactions upregulated the expression levels of related genes encoding galacturonosyltransferase (GAUT), UTP-glucose-1-phosphate uridylyltransferase (UGP), and UDP-glucose-4-epimerase (GALE), involved in polysaccharide biosynthesis, thereby increasing pectin and cellulose levels. Moreover, combined treatment with Se and Mo increased the lignin content and cell wall thickness by upregulating the expression levels of genes encoding cinnamyl alcohol dehydrogenase (CAD), peroxidase (POX) and phenylalanine amino-lyase (PAL), involved in lignin biosynthesis. Fourier-transform infrared (FTIR) spectroscopy results showed that Se + Mo treatment (in combination) increased the number of carboxylic acid groups (-COOH) groups, thereby enhancing the Cr chelation ability. The results not only elucidate the molecular mechanism of action of Se-Mo interactions in mitigating Cr toxicity but also provide new insights for phytoremediation and food safety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.132641 | DOI Listing |
Arch Microbiol
January 2025
Clinical Microbiology and PK-PD Division, CSIR-Indian Institute of Integrative Medicine, Sanatnagar, Srinagar, J&K, 190005, India.
Tuberculosis (TB) remains a major global threat, with 10 million new cases and 1.5 million deaths each year. In multidrug-resistant tuberculosis (MDR-TB), resistance is most commonly observed against isoniazid (INH) and rifampicin (RIF), the two frontline drugs.
View Article and Find Full Text PDFJCI Insight
January 2025
Division of Nephrology, The University of Alabama at Birmingham, Birmingham, United States of America.
Disrupted feeding and fasting cycles as well as chronic high fat diet (HFD)-induced obesity are associated with cardiovascular disease risk factors. We designed studies that determined whether two weeks of time-restricted feeding (TRF) intervention in mice fed a chronic HFD would reduce cardiovascular disease risk factors. Mice were fed a normal diet (ND; 10% fat) ad libitum or HFD (45% fat) for 18 weeks ad libitum to establish diet-induced obesity.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
ABS Research Support Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea.
Two Gram-stain-negative cocci anaerobes were isolated from pig faeces and designated as strains YH-vei2232 and YH-vei2233. Phylogenetic analysis using 16S rRNA gene sequences revealed that the isolates were most closely related to KCTC 5967, with 97.0% similarity.
View Article and Find Full Text PDFVasc Biol
January 2025
M Daemen, Pathology, Amsterdam UMC Location AMC, Amsterdam, Netherlands.
Background: Although mice are used extensively to study atherosclerosis of different vascular beds, limited data is published on the occurrence of intracranial atherosclerosis. Since intracranial atherosclerosis is a common cause of stroke and is associated with dementia, a relevant animal model is needed to study these diseases.
Methods And Results: We examined the presence of intracranial atherosclerosis in different atherogenic mouse strains and studied differences in vessel wall characteristics in mouse and human tissue in search for possible explanations for the different atherosclerotic susceptibility between extracranial and intracranial vessels.
Adv Sci (Weinh)
January 2025
Department of Biomaterials & Biomedical Technology (BBT), University Medical Centre Groningen (UMCG), Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
Free radicals are believed to play a secondary role in the cell death cascade associated with various diseases. In Huntington's disease (HD), the aggregation of polyglutamine (PolyQ) not only contributes to the disease but also elevates free radical levels. However, measuring free radicals is difficult due to their short lifespan and limited diffusion range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!