Due to global changes, e.g., climate change and trade globalization, China is facing an increasingly severe threat from invasive freshwater fish species, which have the potential to cause negative impacts across various aspects and pose significant challenges for their eradication once established. Therefore, prioritizing the understanding of invasive species' potential ranges and their determinants is vital for developing more targeted management strategies. Moreover, it is equally essential to consider the transitory range dynamics of invasive species that reflect changes in habitat availability and accessibility. Here, we used species distribution models (the maximum entropy algorithm) to assess the potential distributions of six notorious invasive fish species (i.e., Coptodon zillii, Cyprinus carpio, Gambusia affinis, Hemiculter leucisculus, Oreochromis mossambicus, and Oreochromis niloticus) in current and future (i.e., the 2030s, 2050s, and 2070s) periods along with their determinants, under two Shared Socio-economic Pathways scenarios (SSP1-2.6 and SSP5-8.5; global climate model: MRI-ESM2-0). Our results showed that the habitat suitability for the six species substantially benefited from temperature conditions (i.e., annual mean temperature or maximum temperature of warmest month). Throughout the given time periods, dramatic range expansions would occur for C. zillii, G. affinis, O. mossambicus, and O. niloticus, ranging from 38.61% to 291.90%. In contrast, the range of C. carpio would change slightly and irregularly, while H. leucisculus would contract marginally, with losses ranging from 1.06% to 12.60%. By the 2070s, species richness of these species would be relatively high in South, Central, and East China and parts of Southwest China. Furthermore, transitory fluctuations in the species ranges for all six species were observed throughout the entire time period (the 2030s-2070s). Given the range shifts for each species during different time periods, as well as time costs and budgets, adaptation strategies should be developed and implemented in the areas where they are most needed in each time period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119197 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Duke University Medical Center, Durham, NC 27701.
In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!