The size of metal compound particles and interface electronic structure of heterojunctions in a matrix greatly affect oxygen reduction performance in zinc-air batteries. However, it is still a big challenge to precisely control or regulate the size of these metal compound particles and the heterojunction structure. Herein, cobalt complexes with different-sized ligands are chosen as cobalt resources and adsorbed onto a mesoporous carbon, after which they are coated with polydopamine and calcined. Under the confinement effect of mesopores and the isolation effect of ligands and dopamine, the as-obtained Co/CoO heterogeneous nanoparticles are restricted to nano-size and uniformly dispersed in N-doped carbon (NC). The sizes of Co/CoO are estimated to be 39.7, 24.9 and 15.6 nm with increased CoO contents, corresponding to the adopted cobalt precursors of Co(OAc), Co(acac) and Co(acac), respectively. The smallest Co/CoO/NC-S shows excellent catalytic activity for oxygen reduction reaction, with a half-wave potential of 0.82 V vs. RHE and a limiting current density of 4.59 mA cm. When applied to the cathode of zinc-air battery, a high peak power density of 131.9 mW cm is achieved, which surpasses that of the battery powered by Pt/C. The excellent performance can be attributed to the formation of heterogeneous structures between Co and CoO, the smaller Co/CoO nanoparticles, and N-doped mesoporous carbon with effective charge/mass transport. This work provides an effective way to regulate the size and phase contents of heterogeneous particles in mesoporous carbon, which is highly valuable in electrocatalytic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.09.176 | DOI Listing |
Adv Mater
January 2025
School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China.
As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
New efficient and sustainable methods for the removal of malachite green (MG) from environmental media are needed. In this study, corn straw was co-pyrolyzed with montmorillonite under a variety of conditions (400, 500, 600, and 700 °C and 10-40 wt% montmorillonite), without any use of toxic chemicals, to produce a series of biochar-clay composites. Characteristics of the composites that make them promising contaminant sorbents include a uniform lamellar-particle micromorphology, enhanced mesoporous structure and surface area (53.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
Owing to the high invasion depth and easy formation of biofilms, the treatment of subcutaneous fungal infection is intractable and challenging. Herein, we report an injectable and biodegradable hydrogel with bactericidal, quorum sensing inhibition and antioxidant activities for the in situ treatment of subcutaneous fungal infection. The hydrogel (BEPE) was constructed by irradiating mixed bovine serum albumin (BSA), ε-polylysine and epigallocatechin gallate (EGCG)-loaded mesoporous polydopamine (PDA) under near-infrared (NIR) light.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Flap techniques are indispensable in modern surgery because of their role in repairing tissue defects and restoring function. Ischemia-reperfusion and oxidative stress-induced injuries are the main causes of flap failure. Oxidative stress exacerbates cell damage through the accumulation of reactive oxygen species (ROS), thereby affecting flap function and survival.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao, 266100, China.
Achieving fast conversion and precise regulation of product selectivity in electrochemical CO reduction reaction (CORR) remains a challenge. The space confinement effect provides a theoretical basis for the design of catalysts of different morphology and sizes and reveals the physical phenomena caused by the confinement of electrons and other particles at the nanoscale. In this work, a semi-confinement concept is introduced and a mesoporous silica nanosphere supported Cu catalyst (Cu-MSN) is prepared as a typical example to realize CORR enhancement and product selectivity regulation (methane vs ethylene).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!